

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SimPy 3.0.6 documentation

Documentation for SimPy

Contents:

	SimPy home

	SimPy in 10 Minutes
	Installation

	Basic Concepts

	Process Interaction

	Shared Resources

	How to Proceed

	Topical Guides
	SimPy basics

	Environments

	Events

	Process Interaction

	Shared Resources

	Real-time simulations

	Porting from SimPy 2 to 3

	Examples
	Condition events

	Interrupts

	Monitoring

	Resources: Container

	Resources: Preemptive Resource

	Resources: Resource

	Resources: Store

	Shared events

	Waiting for other processes

	All examples

	API Reference
	simpy

	simpy.core — SimPy’s core components

	simpy.events — Core event types

	simpy.resources — Shared resource primitives

	simpy.rt — Real-time simulation

	simpy.util — Utility functions for SimPy

	About SimPy
	SimPy History & Change Log

	Acknowledgments

	Ports

	Defense of Design

	Release Process

	License

Indices and tables

	Index

	Search Page

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	SimPy 3.0.6 documentation

 SimPy in 10 Minutes

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

SimPy in 10 Minutes

In this section, you’ll learn the basics of SimPy in just a few minutes.
Afterwards, you will be able to implement a simple simulation using SimPy and
you’ll be able to make an educated decision if SimPy is what you need. We’ll
also give you some hints on how to proceed to implement more complex
simulations.

	Installation

	Basic Concepts

	Process Interaction

	Shared Resources

	How to Proceed

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	SimPy in 10 Minutes

Installation

SimPy is implemented in pure Python and has no dependencies. SimPy runs on
Python 2 (>= 2.7) and Python 3 (>= 3.2). PyPy is also supported. If you have
pip [http://pypi.python.org/pypi/pip] installed, just type

$ pip install simpy

and you are done.

Alternatively, you can download SimPy [http://pypi.python.org/pypi/SimPy/]
and install it manually. Extract the archive, open a terminal window where you
extracted SimPy and type:

$ python setup.py install

You can now optionally run SimPy’s tests to see if everything works fine. You
need pytest [http://pytest.org] and mock [http://www.voidspace.org.uk/python/mock/] for this:

$ python -c "import simpy; simpy.test()"

Upgrading from SimPy 2

If you are already familiar with SimPy 2, please read the Guide
Porting from SimPy 2 to 3.

What’s Next

Now that you’ve installed SimPy, you probably want to simulate something. The
next section will introduce you to SimPy’s basic
concepts.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Basic Concepts

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	SimPy in 10 Minutes

Basic Concepts

SimPy is a discrete-event simulation library. The behavior of active components
(like vehicles, customers or messages) is modeled with processes. All
processes live in an environment. They interact with the environment and with
each other via events.

Processes are described by simple Python generators [http://docs.python.org/3/reference/expressions.html#yieldexpr]. You can call
them process function or process method, depending on whether it is
a normal function or method of a class. During their lifetime, they create
events and yield them in order to wait for them to be triggered.

When a process yields an event, the process gets suspended. SimPy resumes
the process, when the event occurs (we say that the event is triggered).
Multiple processes can wait for the same event. SimPy resumes them in the same
order in which they yielded that event.

An important event type is the Timeout. Events of this
type are triggered after a certain amount of (simulated) time has passed. They
allow a process to sleep (or hold its state) for the given time.
A Timeout and all other events can be created by calling
the appropriate method of the Environment that the process lives in
(Environment.timeout() for example).

Our First Process

Our first example will be a car process. The car will alternately drive and
park for a while. When it starts driving (or parking), it will print the
current simulation time.

So let’s start:

>>> def car(env):
... while True:
... print('Start parking at %d' % env.now)
... parking_duration = 5
... yield env.timeout(parking_duration)
...
... print('Start driving at %d' % env.now)
... trip_duration = 2
... yield env.timeout(trip_duration)

Our car process requires a reference to an Environment (env) in
order to create new events. The car‘s behavior is described in an infinite
loop. Remember, this function is a generator. Though it will never terminate,
it will pass the control flow back to the simulation once a yield statement
is reached. Once the yielded event is triggered (“it occurs”), the simulation
will resume the function at this statement.

As I said before, our car switches between the states parking and driving.
It announces its new state by printing a message and the current simulation
time (as returned by the Environment.now property). It then calls the
Environment.timeout() factory function to create
a Timeout event. This event describes the point in time
the car is done parking (or driving, respectively). By yielding the event,
it signals the simulation that it wants to wait for the event to occur.

Now that the behavior of our car has been modeled, lets create an instance of
it and see how it behaves:

>>> import simpy
>>> env = simpy.Environment()
>>> env.process(car(env))
<Process(car) object at 0x...>
>>> env.run(until=15)
Start parking at 0
Start driving at 5
Start parking at 7
Start driving at 12
Start parking at 14

The first thing we need to do is to create an instance of Environment.
This instance is passed into our car process function. Calling it creates
a process generator that needs to be started and added to the environment via
Environment.process().

Note, that at this time, none of the code of our process function is being
executed. Its execution is merely scheduled at the current simulation time.

The Process returned by process()
can be used for process interactions (we will cover that in the next section,
so we will ignore it for now).

Finally, we start the simulation by calling run() and
passing an end time to it.

What’s Next?

You should now be familiar with Simpy’s terminology and basic concepts. In the
next section, we will cover process interaction.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Process Interaction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	SimPy in 10 Minutes

Process Interaction

The Process instance that is returned by
Environment.process() can be utilized for process interactions. The two
most common examples for this are to wait for another process to finish and to
interrupt another process while it is waiting for an event.

Waiting for a Process

As it happens, a SimPy Process can be used like an event
(technically, a process actually is an event). If you yield it, you are
resumed once the process has finished. Imagine a car-wash simulation where cars
enter the car-wash and wait for the washing process to finish. Or an airport
simulation where passengers have to wait until a security check finishes.

Lets assume that the car from our last example magically became an electric
vehicle. Electric vehicles usually take a lot of time charging their batteries
after a trip. They have to wait until their battery is charged before they can
start driving again.

We can model this with an additional charge() process for our car.
Therefore, we refactor our car to be a class with two process methods:
run() (which is the original car() process function) and charge().

The run process is automatically started when Car is instantiated.
A new charge process is started every time the vehicle starts parking. By
yielding the Process instance that
Environment.process() returns, the run process starts waiting for
it to finish:

>>> class Car(object):
... def __init__(self, env):
... self.env = env
... # Start the run process everytime an instance is created.
... self.action = env.process(self.run())
...
... def run(self):
... while True:
... print('Start parking and charging at %d' % self.env.now)
... charge_duration = 5
... # We yield the process that process() returns
... # to wait for it to finish
... yield self.env.process(self.charge(charge_duration))
...
... # The charge process has finished and
... # we can start driving again.
... print('Start driving at %d' % self.env.now)
... trip_duration = 2
... yield self.env.timeout(trip_duration)
...
... def charge(self, duration):
... yield self.env.timeout(duration)

Starting the simulation is straight forward again: We create an environment,
one (or more) cars and finally call meth:~Environment.simulate().

>>> import simpy
>>> env = simpy.Environment()
>>> car = Car(env)
>>> env.run(until=15)
Start parking and charging at 0
Start driving at 5
Start parking and charging at 7
Start driving at 12
Start parking and charging at 14

Interrupting Another Process

Imagine, you don’t want to wait until your electric vehicle is fully charged
but want to interrupt the charging process and just start driving instead.

SimPy allows you to interrupt a running process by calling its
interrupt() method:

>>> def driver(env, car):
... yield env.timeout(3)
... car.action.interrupt()

The driver process has a reference to the car’s action process. After
waiting for 3 time steps, it interrupts that process.

Interrupts are thrown into process functions as Interrupt
exceptions that can (should) be handled by the interrupted process. The process
can than decide what to do next (e.g., continuing to wait for the original
event or yielding a new event):

>>> class Car(object):
... def __init__(self, env):
... self.env = env
... self.action = env.process(self.run())
...
... def run(self):
... while True:
... print('Start parking and charging at %d' % self.env.now)
... charge_duration = 5
... # We may get interrupted while charging the battery
... try:
... yield self.env.process(self.charge(charge_duration))
... except simpy.Interrupt:
... # When we received an interrupt, we stop charing and
... # switch to the "driving" state
... print('Was interrupted. Hope, the battery is full enough ...')
...
... print('Start driving at %d' % self.env.now)
... trip_duration = 2
... yield self.env.timeout(trip_duration)
...
... def charge(self, duration):
... yield self.env.timeout(duration)

When you compare the output of this simulation with the previous example,
you’ll notice that the car now starts driving at time 3 instead of 5:

>>> env = simpy.Environment()
>>> car = Car(env)
>>> env.process(driver(env, car))
<Process(driver) object at 0x...>
>>> env.run(until=15)
Start parking and charging at 0
Was interrupted. Hope, the battery is full enough ...
Start driving at 3
Start parking and charging at 5
Start driving at 10
Start parking and charging at 12

What’s Next

We just demonstrated two basic methods for process interactions—waiting for
a process and interrupting a process. Take a look at the
Topical Guides or the Process API
reference for more details.

In the next section we will cover the basic usage of
shared resources.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Shared Resources

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	SimPy in 10 Minutes

Shared Resources

SimPy offers three types of resources that help you modeling
problems, where multiple processes want to use a resource of limited capacity
(e.g., cars at a fuel station with a limited number of fuel pumps) or classical
producer-consumer problems.

In this section, we’ll briefly introduce SimPy’s
Resource class.

Basic Resource Usage

We’ll slightly modify our electric vehicle process car that we introduced in
the last sections.

The car will now drive to a battery charging station (BCS) and request one of
its two charging spots. If both of these spots are currently in use, it waits
until one of them becomes available again. It then starts charging its battery
and leaves the station afterwards:

>>> def car(env, name, bcs, driving_time, charge_duration):
... # Simulate driving to the BCS
... yield env.timeout(driving_time)
...
... # Request one of its charging spots
... print('%s arriving at %d' % (name, env.now))
... with bcs.request() as req:
... yield req
...
... # Charge the battery
... print('%s starting to charge at %s' % (name, env.now))
... yield env.timeout(charge_duration)
... print('%s leaving the bcs at %s' % (name, env.now))

The resource’s request() method
generates an event that lets you wait until the resource becomes available
again. If you are resumed, you “own” the resource until you release it.

If you use the resource with the with statement as shown above, the
resource is automatically being released. If you call request() without
with, you are responsible to call
release() once you are done using
the resource.

When you release a resource, the next waiting process is resumed and now “owns”
one of the resource’s slots. The basic
Resource sorts waiting processes in a FIFO
(first in—first out) way.

A resource needs a reference to an Environment and
a capacity when it is created:

>>> import simpy
>>> env = simpy.Environment()
>>> bcs = simpy.Resource(env, capacity=2)

We can now create the car processes and pass a reference to our resource as
well as some additional parameters to them:

>>> for i in range(4):
... env.process(car(env, 'Car %d' % i, bcs, i*2, 5))
<Process(car) object at 0x...>
<Process(car) object at 0x...>
<Process(car) object at 0x...>
<Process(car) object at 0x...>

Finally, we can start the simulation. Since the car processes all terminate on
their own in this simulation, we don’t need to specify an until time—the
simulation will automatically stop when there are no more events left:

>>> env.run()
Car 0 arriving at 0
Car 0 starting to charge at 0
Car 1 arriving at 2
Car 1 starting to charge at 2
Car 2 arriving at 4
Car 0 leaving the bcs at 5
Car 2 starting to charge at 5
Car 3 arriving at 6
Car 1 leaving the bcs at 7
Car 3 starting to charge at 7
Car 2 leaving the bcs at 10
Car 3 leaving the bcs at 12

Note that the first two cars can start charging immediately after they arrive
at the BCS, while cars 2 an 3 have to wait.

What’s Next

You should now be familiar with SimPy’s basic concepts. The next section shows you how you can proceed with using SimPy from here on.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 How to Proceed

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	SimPy in 10 Minutes

How to Proceed

If you are not certain yet if SimPy fulfills your requirements or if you want
to see more features in action, you should take a look at the various
examples we provide.

If you are looking for a more detailed description of a certain aspect or
feature of SimPy, the Topical Guides section
might help you.

Finally, there is an API Reference that
describes all functions and classes in full detail.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Topical Guides

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

Topical Guides

This sections covers various aspects of SimPy more in-depth. It assumes that
you have a basic understanding of SimPy’s capabilities and that you know what
you are looking for.

	SimPy basics

	Environments

	Events

	Process Interaction

	Shared Resources

	Real-time simulations

	Porting from SimPy 2 to 3

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 SimPy basics

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

SimPy basics

This guide describes the basic concepts of SimPy: How does it work? What are
processes, events and the environment? What can I do with them?

How SimPy works

If you break SimPy down, it is just an asynchronous event dispatcher. You
generate events and schedule them at a given simulation time. Events are sorted
by priority, simulation time, and an increasing event id. An event also has
a list of callbacks, which are executed when the event is triggered and
processed by the event loop. Events may also have a return value.

The components involved in this are the Environment,
events and the process functions that you write.

Process functions implement your simulation model, that is, they define the
behavior of your simulation. They are plain Python generator functions that
yield instances of Event.

The environment stores these events in its event list and keeps track of the
current simulation time.

If a process function yields an event, SimPy adds the process to the event’s
callbacks and suspends the process until the event is triggered and processed.
When a process waiting for an event is resumed, it will also receive the
event’s value.

Here is a very simple example that illustrates all this; the code is more
verbose than it needs to be to make things extra clear. You find a compact
version of it at the end of this section:

>>> import simpy
>>>
>>> def example(env):
... event = simpy.events.Timeout(env, delay=1, value=42)
... value = yield event
... print('now=%d, value=%d' % (env.now, value))
>>>
>>> env = simpy.Environment()
>>> example_gen = example(env)
>>> p = simpy.events.Process(env, example_gen)
>>>
>>> env.run()
now=1, value=42

The example() process function above first creates
a Timeout event. It passes the environment, a delay, and
a value to it. The Timeout schedules itself at now + delay (that’s why the
environment is required); other event types usually schedule themselves at the
current simulation time.

The process function then yields the event and thus gets suspended. It is
resumed, when SimPy processes the Timeout event. The process function also
receives the event’s value (42) – this is, however, optional, so yield
event would have been okay if the you were not interested in the value or if
the event had no value at all.

Finally, the process function prints the current simulation time (that is
accessible via the environment’s now attribute)
and the Timeout’s value.

If all required process functions are defined, you can instantiate all objects
for your simulation. In most cases, you start by creating an instance of
Environment, because you’ll need to pass it around a lot
when creating everything else.

Starting a process function involves two things:

	You have to call the process function to create a generator object. (This
will not execute any code of that function yet. Please read The Python
yield keyword explained [http://stackoverflow.com/questions/231767/the-python-yield-keyword-explained/231855#231855],
to understand why this is the case.)

	You then create an instance of Process and pass the
environment and the generator object to it. This will schedule an
Initialize event at the current simulation time which
starts the execution of the process function. The process instance is also
an event that is triggered when the process function returns. The
guide to events explains why this is handy.

Finally, you can start SimPy’s event loop. By default, it will run as long as
there are events in the event list, but you can also let it stop earlier by
providing an until argument (see Simulation control).

The following guides describe the environment and its interactions with events
and process functions in more detail.

“Best practice” version of the example above

>>> import simpy
>>>
>>> def example(env):
... value = yield env.timeout(1, value=42)
... print('now=%d, value=%d' % (env.now, value))
>>>
>>> env = simpy.Environment()
>>> p = env.process(example(env))
>>> env.run()
now=1, value=42

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Environments

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Environments

A simulation environment manages the simulation time as well as the scheduling
and processing of events. It also provides means to step through or execute the
simulation.

The base class for all environments is BaseEnvironment.
“Normal” simulations usually use its subclass
Environment. For real-time simulations, SimPy provides a
RealtimeEnvironment (more on that in
Real-time simulations).

Simulation control

SimPy is very flexible in terms of simulation execution. You can run your
simulation until there are no more events, until a certain simulation time is
reached, or until a certain event is triggered. You can also step through the
simulation event by event. Furthermore, you can mix these things as you like.

For example, you could run your simulation until an interesting event occurs.
You could then step through the simulation event by event for a while; and
finally run the simulation until there are no more events left and your processes
have all terminated.

The most important method here is Environment.run():

	If you call it without any argument (env.run()), it steps through the
simulation until there are no more events left.

Warning

If your processes run forever (while True: yield env.timeout(1)), this
method will never terminate (unless you kill your script by e.g., pressing
Ctrl-C).

	In most cases it is advisable to stop your simulation when it reaches
a certain simulation time. Therefore, you can pass the desired time via the
until parameter, e.g.: env.run(until=10).

The simulation will then stop when the internal clock reaches 10 but will not
process any events scheduled for time 10. This is similar to a new
environment where the clock is 0 but (obviously) no events have yet been
processed.

If you want to integrate your simulation in a GUI and want to draw a
process bar, you can repeatedly call this function with increasing until
values and update your progress bar after each call:

for i in range(100):
 env.run(until=i)
 progressbar.update(i)

	Instead of passing a number to run(), you can also pass any event to it.
run() will then return when the event has been processed.

Assuming that the current time is 0, env.run(until=env.timeout(5)) is
equivalent to env.run(until=5).

You can also pass other types of events (remember, that
a Process is an event, too):

>>> import simpy
>>>
>>> def my_proc(env):
... yield env.timeout(1)
... return 'Monty Python’s Flying Circus'
>>>
>>> env = simpy.Environment()
>>> proc = env.process(my_proc(env))
>>> env.run(until=proc)
'Monty Python’s Flying Circus'

To step through the simulation event by event, the environment offers
peek() and step().

peek() returns the time of the next scheduled event of infinity
(float('inf')) of no more event is scheduled.

step() processes the next scheduled event. It raises an
EmptySchedule exception if no event is available.

In a typical use case, you use these methods in a loop like:

until = 10
while env.peek() < until:
 env.step()

State access

The environment allows you to get the current simulation time via the
Environment.now property. The simulation time is a number without unit
and is increased via Timeout events.

By default, now starts at 0, but you can pass an initial_time to the
Environment to use something else.

Note

Although the simulation time is technically unitless, you can pretend that
it is, for example, in seconds and use it like a timestamp returned by
time.time() [http://docs.python.org/3/library/time.html#time.time] to calculate a date or the day of the week.

The property Environment.active_process is comparable to
os.getpid() [http://docs.python.org/3/library/os.html#os.getpid] and is either None or pointing at the currently active
Process. A process is active when its process function
is being executed. It becomes inactive (or suspended) when it yields an
event.

Thus, it only makes sense to access this property from within a process
function or a function that is called by your process function:

>>> def subfunc(env):
... print(env.active_process) # will print "p1"
>>>
>>> def my_proc(env):
... while True:
... print(env.active_process) # will print "p1"
... subfunc(env)
... yield env.timeout(1)
>>>
>>> env = simpy.Environment()
>>> p1 = env.process(my_proc(env))
>>> env.active_process # None
>>> env.step()
<Process(my_proc) object at 0x...>
<Process(my_proc) object at 0x...>
>>> env.active_process # None

An exemplary use case for this is the resource system: If a process function
calls request() to request
a resource, the resource determines the requesting process via
env.active_process. Take a look at the code [https://bitbucket.org/simpy/simpy/src/3.0.2/simpy/resources/base.py#cl-35] to see how we do this :-).

Event creation

To create events, you normally have to import simpy.events, instantiate
the event class and pass a reference to the environment to it. To reduce the
amount of typing, the Environment provides some shortcuts for event
creation. For example, Environment.event() is equivalent to
simpy.events.Event(env).

Other shortcuts are:

	Environment.process()

	Environment.timeout()

	Environment.all_of()

	Environment.any_of()

More details on what the events do can be found in the guide to events.

Miscellaneous

Since Python 3.3, a generator function can have a return value:

def my_proc(env):
 yield env.timeout(1)
 return 42

In SimPy, this can be used to provide return values for processes that can be
used by other processes:

def other_proc(env):
 ret_val = yield env.process(my_proc(env))
 assert ret_val == 42

Internally, Python passes the return value as parameter to the
StopIteration [http://docs.python.org/3/library/exceptions.html#StopIteration] exception that it raises when a generator is exhausted. So
in Python 2.7 and 3.2 you could replace the return 42 with a raise
StopIteration(42) to achieve the same result.

To keep your code more readable, the environment provides the method
exit() to do exactly this:

def my_proc(env):
 yield env.timeout(1)
 env.exit(42) # Py2 equivalent to "return 42"

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Events

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Events

SimPy includes an extensive set of event types for various purposes. All of
them inherit simpy.events.Event. The listing below shows the
hierarchy of events built into SimPy:

events.Event
↑
+— events.Timeout
|
+— events.Initialize
|
+— events.Process
|
+— events.Condition
| ↑
| +— events.AllOf
| |
| +— events.AnyOf
⋮
+– [resource events]

This is the set of basic events. Events are extensible and resources, for
example, define additional events. In this guide, we’ll focus on the events in
the simpy.events module. The guide to resources
describes the various resource events.

Event basics

SimPy events are very similar – if not identical — to deferreds, futures or
promises. Instances of the class Event are used to describe any kind
of events. Events can be in one of the following states. An event

	might happen (not triggered),

	is going to happen (triggered) or

	has happened (processed).

They traverse these states exactly once in that order. Events are also tightly
bound to time and time causes events to advance their state.

Initially, events are not triggered and just objects in memory.

If an event gets triggered, it is scheduled at a given time and inserted into
SimPy’s event queue. The property Event.triggered becomes True.

As long as the event is not processed, you can add callbacks to an event.
Callbacks are callables that accept an event as parameter and are stored in the
Event.callbacks list.

An event becomes processed when SimPy pops it from the event queue and
calls all of its callbacks. It is now no longer possible to add callbacks. The
property Event.processed becomes True.

Events also have a value. The value can be set before or when the event is
triggered and can be retrieved via Event.value or, within a process, by
yielding the event (value = yield event).

Adding callbacks to an event

“What? Callbacks? I’ve never seen no callbacks!”, you might think if you have
worked your way through the tutorial.

That’s on purpose. The most common way to add a callback to an event is
yielding it from your process function (yield event). This will add the
process’ _resume() method as a callback. That’s how your process gets resumed
when it yielded an event.

However, you can add any callable object (function) to the list of callbacks
as long as it accepts an event instance as its single parameter:

>>> import simpy
>>>
>>> def my_callback(event):
... print('Called back from', event)
...
>>> env = simpy.Environment()
>>> event = env.event()
>>> event.callbacks.append(my_callback)
>>> event.callbacks
[<function my_callback at 0x...>]

If an event has been processed, all of its Event.callbacks have been
executed and the attribute is set to None. This is to prevent you from
adding more callbacks – these would of course never get called because the
event has already happened.

Processes are smart about this, though. If you yield a processed event,
_resume() will immediately resume your process with the value of the event
(because there is nothing to wait for).

Triggering events

When events are triggered, they can either succeed or fail. For example, if
an event is to be triggered at the end of a computation and everything works
out fine, the event will succeed. If an exceptions occurs during that
computation, the event will fail.

To trigger an event and mark it as successful, you can use
Event.succeed(value=None). You can optionally pass a value to it (e.g.,
the results of a computation).

To trigger an event and mark it as failed, call Event.fail(exception)
and pass an Exception [http://docs.python.org/3/library/exceptions.html#Exception] instance to it (e.g., the exception you caught
during your failed computation).

There is also a generic way to trigger an event: Event.trigger(event).
This will take the value and outcome (success or failure) of the event passed
to it.

All three methods return the event instance they are bound to. This allows you
to do things like yield Event(env).succeed().

Example usages for Event

The simple mechanics outlined above provide a great flexibility in the way
events (even the basic Event) can be used.

One example for this is that events can be shared. They can be created by a
process or outside of the context of a process. They can be passed to other
processes and chained:

>>> class School:
... def __init__(self, env):
... self.env = env
... self.class_ends = env.event()
... self.pupil_procs = [env.process(self.pupil()) for i in range(3)]
... self.bell_proc = env.process(self.bell())
...
... def bell(self):
... for i in range(2):
... yield self.env.timeout(45)
... self.class_ends.succeed()
... self.class_ends = self.env.event()
... print()
...
... def pupil(self):
... for i in range(2):
... print(' \o/', end='')
... yield self.class_ends
...
>>> school = School(env)
>>> env.run()
 \o/ \o/ \o/
 \o/ \o/ \o/

This can also be used like the passivate / reactivate known from SimPy 2.
The pupils passivate when class begins and are reactivated when the bell
rings.

Let time pass by: the Timeout

To actually let time pass in a simulation, there is the timeout event.
A timeout has two parameters: a delay and an optional value:
Timeout(delay, value=None). It triggers itself during its creation and
schedules itself at now + delay. Thus, the succeed() and fail()
methods cannot be called again and you have to pass the event value to it when
you create the timeout.

The delay can be any kind of number, usually an int or float as long as it
supports comparison and addition.

Processes are events, too

SimPy processes (as created by Process or env.process()) have the
nice property of being events, too.

That means, that a process can yield another process. It will then be resumed
when the other process ends. The event’s value will be the return value of that
process:

>>> def sub(env):
... yield env.timeout(1)
... return 23
...
>>> def parent(env):
... ret = yield env.process(sub(env))
... return ret
...
>>> env.run(env.process(parent(env)))
23

The example above will only work in Python >= 3.3. As a workaround for older
Python versions, you can use env.exit(23) with the same effect.

When a process is created, it schedules an Initialize event which will
start the execution of the process when triggered. You usually won’t have to
deal with this type of event.

If you don’t want a process to start immediately but after a certain delay, you
can use simpy.util.start_delayed(). This method returns a helper
process that uses a timeout before actually starting a process.

The example from above, but with a delayed start of sub():

>>> from simpy.util import start_delayed
>>>
>>> def sub(env):
... yield env.timeout(1)
... return 23
...
>>> def parent(env):
... start = env.now
... sub_proc = yield start_delayed(env, sub(env), delay=3)
... assert env.now - start == 3
...
... ret = yield sub_proc
... return ret
...
>>> env.run(env.process(parent(env)))
23

Waiting for multiple events at once

Sometimes, you want to wait for more than one event at the same time. For
example, you may want to wait for a resource, but not for an unlimited amount
of time. Or you may want to wait until all a set of events has happened.

SimPy therefore offers the AnyOf and AllOf events which both
are a Condition event.

Both take a list of events as an argument and are triggered if at least one or
all of them of them are triggered.

>>> from simpy.events import AnyOf, AllOf, Event
>>> events = [Event(env) for i in range(3)]
>>> a = AnyOf(env, events) # Triggers if at least one of "events" is triggered.
>>> b = AllOf(env, events) # Triggers if all each of "events" is triggered.

The value of a condition event is an ordered dictionary with an entry for every
triggered event. In the case of AllOf, the size of that dictionary will
always be the same as the length of the event list. The value dict of AnyOf
will have at least one entry. In both cases, the event instances are used as
keys and the event values will be the values.

As a shorthand for AllOf and AnyOf, you can also use the logical
operators & (and) and | (or):

>>> def test_condition(env):
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... ret = yield t1 | t2
... assert ret == {t1: 'spam'}
...
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... ret = yield t1 & t2
... assert ret == {t1: 'spam', t2: 'eggs'}
...
... # You can also concatenate & and |
... e1, e2, e3 = [env.timeout(i) for i in range(3)]
... yield (e1 | e2) & e3
... assert all(e.triggered for e in [e1, e2, e3])
...
>>> proc = env.process(test_condition(env))
>>> env.run()

The order of condition results is identical to the order in which the condition
events were specified. This allows the following idiom for conveniently
fetching the values of multiple events specified in an and condition
(including AllOf):

>>> def fetch_values_of_multiple_events(env):
... t1, t2 = env.timeout(1, value='spam'), env.timeout(2, value='eggs')
... r1, r2 = (yield t1 & t2).values()
... assert r1 == 'spam' and r2 == 'eggs'
...
>>> proc = env.process(fetch_values_of_multiple_events(env))
>>> env.run()

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Process Interaction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Process Interaction

Discrete event simulation is only made interesting by interactions between
processes.

So this guide is about:

	Sleep until woken up (passivate/reactivate)

	Waiting for another process to terminate

	Interrupting another process

The first two items were already covered in the Events guide, but we’ll
also include them here for the sake of completeness.

Another possibility for processes to interact are resources. They are discussed
in a separate guide.

Sleep until woken up

Imagine you want to model an electric vehicle with an intelligent
battery-charging controller. While the vehicle is driving, the controller can
be passive but needs to be reactivate once the vehicle is connected to the
power grid in order to charge the battery.

In SimPy 2, this pattern was known as passivate / reactivate. In SimPy 3,
you can accomplish that with a simple, shared Event:

>>> from random import seed, randint
>>> seed(23)
>>>
>>> import simpy
>>>
>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
... self.bat_ctrl_proc = env.process(self.bat_ctrl(env))
... self.bat_ctrl_reactivate = env.event()
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1–6 hours
... print('Start parking at', env.now)
... self.bat_ctrl_reactivate.succeed() # "reactivate"
... self.bat_ctrl_reactivate = env.event()
... yield env.timeout(randint(60, 360))
... print('Stop parking at', env.now)
...
... def bat_ctrl(self, env):
... while True:
... print('Bat. ctrl. passivating at', env.now)
... yield self.bat_ctrl_reactivate # "passivate"
... print('Bat. ctrl. reactivated at', env.now)
...
... # Intelligent charging behavior here …
... yield env.timeout(randint(30, 90))
...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=150)
Bat. ctrl. passivating at 0
Start parking at 29
Bat. ctrl. reactivated at 29
Bat. ctrl. passivating at 60
Stop parking at 131

Since bat_ctrl() just waits for a normal event, we no longer call this
pattern passivate / reactivate in SimPy 3.

Waiting for another process to terminate

The example above has a problem: it may happen that the vehicles wants to park
for a shorter duration than it takes to charge the battery (this is the case if
both, charging and parking would take 60 to 90 minutes).

To fix this problem we have to slightly change our model. A new bat_ctrl()
will be started every time the EV starts parking. The EV then waits until the
parking duration is over and until the charging has stopped:

>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1–6 hours
... print('Start parking at', env.now)
... charging = env.process(self.bat_ctrl(env))
... parking = env.timeout(randint(60, 360))
... yield charging & parking
... print('Stop parking at', env.now)
...
... def bat_ctrl(self, env):
... print('Bat. ctrl. started at', env.now)
... # Intelligent charging behavior here …
... yield env.timeout(randint(30, 90))
... print('Bat. ctrl. done at', env.now)
...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=310)
Start parking at 29
Bat. ctrl. started at 29
Bat. ctrl. done at 83
Stop parking at 305

Again, nothing new (if you’ve read the Events guide) and special is
happening. SimPy processes are events, too, so you can yield them and will thus
wait for them to get triggered. You can also wait for two events at the same
time by concatenating them with & (see
Waiting for multiple events at once).

Interrupting another process

As usual, we now have another problem: Imagine, a trip is very urgent, but with
the current implementation, we always need to wait until the battery is fully
charged. If we could somehow interrupt that ...

Fortunate coincidence, there is indeed a way to do exactly this. You can call
interrupt() on a Process. This will throw an
Interrupt exception into that process, resuming it
immediately:

>>> class EV:
... def __init__(self, env):
... self.env = env
... self.drive_proc = env.process(self.drive(env))
...
... def drive(self, env):
... while True:
... # Drive for 20-40 min
... yield env.timeout(randint(20, 40))
...
... # Park for 1 hour
... print('Start parking at', env.now)
... charging = env.process(self.bat_ctrl(env))
... parking = env.timeout(60)
... yield charging | parking
... if not charging.triggered:
... # Interrupt charging if not already done.
... charging.interrupt('Need to go!')
... print('Stop parking at', env.now)
...
... def bat_ctrl(self, env):
... print('Bat. ctrl. started at', env.now)
... try:
... yield env.timeout(randint(60, 90))
... print('Bat. ctrl. done at', env.now)
... except simpy.Interrupt as i:
... # Onoes! Got interrupted before the charging was done.
... print('Bat. ctrl. interrupted at', env.now, 'msg:',
... i.cause)
...
>>> env = simpy.Environment()
>>> ev = EV(env)
>>> env.run(until=100)
Start parking at 31
Bat. ctrl. started at 31
Stop parking at 91
Bat. ctrl. interrupted at 91 msg: Need to go!

What process.interrupt() actually does is scheduling an
Interruption event for immediate execution. If this
event is executed it will remove the victim process’ _resume() method from
the callbacks of the event that it is currently waiting for (see
target). Following that it will throw the
Interrupt exception into the process.

Since we don’t to anything special to the original target event of the process,
the interrupted process can yield the same event again after catching the
Interrupt – Imagine someone waiting for a shop to open. The person may get
interrupted by a phone call. After finishing the call, he or she checks if the
shop already opened and either enters or continues to wait.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Shared Resources

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Shared Resources

Shared resources are another way to model Process Interaction. They form
a congestion point where processes queue up in order to use them.

SimPy defines three categories of resources:

	Resources – Resources that can be used by a limited
number of processes at a time (e.g., a gas station with a limited number of
fuel pumps).

	Containers – Resources that model the production and
consumption of a homogeneous, undifferentiated bulk. It may either be
continuous (like water) or discrete (like apples).

	Stores – Resources that allow the production and
consumption of Python objects.

The basic concept of resources

All resources share the same basic concept: The resource itself is some kind of
a container with a, usually limited, capacity. Processes can either try to
put something into the resource or try to get something out. If the
resource is full or empty, they have to queue up and wait.

This is roughly, how every resource looks like:

BaseResource(capacity):
 put_queue
 get_queue

 put(): event
 get(): event

Every resources a maximum capacity and two queues, one for processes that want
to put something into it and one for processes that want to get something out.
The put() and get() methods both return an event that is triggered when
the corresponding action was successful.

Resources and interrupts

While a process is waiting for a put or get event to succeed, it may be
interrupted by another process. After
catching the interrupt, the process has two possibilities:

	It may continue to wait for the request (by yielding the event again).

	It may stop waiting for the request. In this case, it has to call the
event’s cancel() method.

Since you can easily forget this, all resources events are context
managers (see the Python docs [https://docs.python.org/3/reference/compound_stmts.html#with] for
details).

The resource system is modular and extensible. Resources can, for example, use
specialized queues and event types. This allows them to use sorted queues, to
add priorities to events, or to offer preemption.

Resources

Resources can be used by a limited number of processes at a time (e.g.,
a gas station with a limited number of fuel pumps). Processes request these
resources to become a user (or to “own” them) and have to release them once
they are done (e.g., vehicles arrive at the gas station, use a fuel-pump, if
one is available, and leave when they are done).

Requesting a resources is modeled as “putting a process’ token into the
resources” and releasing a resources correspondingly as “getting a process’
token out of the resource”. Thus, calling request()/release() is
equivalent to calling put()/get(). Releasing a resource will always
succeed immediately.

SimPy implements three resource types:

	Resource

	PriorityResource, where queueing processes are sorted by priority

	PreemptiveResource, where processes additionally may preempt other
processes with a lower priority

Resource

The Resource is conceptually a semaphore. Its only parameter – apart from
the obligatory reference to an Environment – is its
capacity. It must be a positive number and defaults to 1: Resource(env,
capacity=1).

Instead of just counting its current users, it stores the request event as an
“access token” for each user. This is, for example, useful for adding
preemption (see below).

Here is as basic example for using a resource:

>>> import simpy
>>>
>>> def resource_user(env, resource):
... request = resource.request() # Generate a request event
... yield request # Wait for access
... yield env.timeout(1) # Do something
... resource.release(request) # Release the resource
...
>>> env = simpy.Environment()
>>> res = simpy.Resource(env, capacity=1)
>>> user = env.process(resource_user(env, res))
>>> env.run()

Note, that you have to release the resource under all conditions; for example,
if you got interrupted while waiting for or using the resource. In order to
help you with that and to avoid too many try: ... finally: ... constructs,
request events can be used as context manager:

>>> def resource_user(env, resource):
... with resource.request() as req: # Generate a request event
... yield req # Wait for access
... yield env.timeout(1) # Do something
... # Resource released automatically
>>> user = env.process(resource_user(env, res))
>>> env.run()

Resources allow you retrieve the list of users and queued as well as the
number of users and resource’s capacity:

>>> res = simpy.Resource(env, capacity=1)
>>>
>>> def print_stats(res):
... print('%d of %d slots are allocated.' % (res.count, res.capacity))
... print(' Users:', res.users)
... print(' Queued events:', res.queue)
>>>
>>>
>>> def user(res):
... print_stats(res)
... with res.request() as req:
... yield req
... print_stats(res)
... print_stats(res)
>>>
>>> procs = [env.process(user(res)), env.process(user(res))]
>>> env.run()
0 of 1 slots are allocated.
 Users: []
 Queued events: []
1 of 1 slots are allocated.
 Users: [<Request() object at 0x...>]
 Queued events: [<Request() object at 0x...>]
1 of 1 slots are allocated.
 Users: [<Request() object at 0x...>]
 Queued events: [<Request() object at 0x...>]
0 of 1 slots are allocated.
 Users: []
 Queued events: [<Request() object at 0x...>]
1 of 1 slots are allocated.
 Users: [<Request() object at 0x...>]
 Queued events: []
0 of 1 slots are allocated.
 Users: []
 Queued events: []

PriorityResource

As you may know from the real world, not every one is equally important. To map
that to SimPy, there’s the PriorityResource. This subclass of Resource lets
requesting processes provide a priority for each request. More important
requests will gain access to the resource earlier than less important ones.
Priority is expressed by integer numbers; smaller numbers mean a higher
priority.

Apart form that, it works like a normal Resource:

>>> def resource_user(name, env, resource, wait, prio):
... yield env.timeout(wait)
... with resource.request(priority=prio) as req:
... print('%s requesting at %s with priority=%s' % (name, env.now, prio))
... yield req
... print('%s got resource at %s' % (name, env.now))
... yield env.timeout(3)
...
>>> env = simpy.Environment()
>>> res = simpy.PriorityResource(env, capacity=1)
>>> p1 = env.process(resource_user(1, env, res, wait=0, prio=0))
>>> p2 = env.process(resource_user(2, env, res, wait=1, prio=0))
>>> p3 = env.process(resource_user(3, env, res, wait=2, prio=-1))
>>> env.run()
1 requesting at 0 with priority=0
1 got resource at 0
2 requesting at 1 with priority=0
3 requesting at 2 with priority=-1
3 got resource at 3
2 got resource at 6

Although p3 requested the resource later than p2, it could use it earlier
because its priority was higher.

PreemptiveResource

Sometimes, new requests are so important that queue-jumping is not enough and
they need to kick existing users out of the resource (this is called
preemption). The PreemptiveResource allows you to do exactly this:

>>> def resource_user(name, env, resource, wait, prio):
... yield env.timeout(wait)
... with resource.request(priority=prio) as req:
... print('%s requesting at %s with priority=%s' % (name, env.now, prio))
... yield req
... print('%s got resource at %s' % (name, env.now))
... try:
... yield env.timeout(3)
... except simpy.Interrupt as interrupt:
... by = interrupt.cause.by
... usage = env.now - interrupt.cause.usage_since
... print('%s got preempted by %s at %s after %s' %
... (name, by, env.now, usage))
...
>>> env = simpy.Environment()
>>> res = simpy.PreemptiveResource(env, capacity=1)
>>> p1 = env.process(resource_user(1, env, res, wait=0, prio=0))
>>> p2 = env.process(resource_user(2, env, res, wait=1, prio=0))
>>> p3 = env.process(resource_user(3, env, res, wait=2, prio=-1))
>>> env.run()
1 requesting at 0 with priority=0
1 got resource at 0
2 requesting at 1 with priority=0
3 requesting at 2 with priority=-1
1 got preempted by <Process(resource_user) object at 0x...> at 2 after 2
3 got resource at 2
2 got resource at 5

PreemptiveResource inherits from PriorityResource and adds a preempt
flag (that defaults to True) to request(). By setting this to False
(resource.request(priority=x, preempt=False)), a process can decide to not
preempt another resource user. It will still be put in the queue according to
its priority, though.

The implementation of PreemptiveResource values priorities higher than
preemption. That means preempt request are not allowed to cheat and jump over
a higher prioritized request. The following example shows that preemptive low
priority requests cannot queue-jump over high priority requests:

>>> def user(name, env, res, prio, preempt):
... with res.request(priority=prio, preempt=preempt) as req:
... try:
... print('%s requesting at %d' % (name, env.now))
... yield req
... print('%s got resource at %d' % (name, env.now))
... yield env.timeout(3)
... except simpy.Interrupt:
... print('%s got preempted at %d' % (name, env.now))
>>>
>>> env = simpy.Environment()
>>> res = simpy.PreemptiveResource(env, capacity=1)
>>> A = env.process(user('A', env, res, prio=0, preempt=True))
>>> env.run(until=1) # Give A a head start
A requesting at 0
A got resource at 0
>>> B = env.process(user('B', env, res, prio=-2, preempt=False))
>>> C = env.process(user('C', env, res, prio=-1, preempt=True))
>>> env.run()
B requesting at 1
C requesting at 1
B got resource at 3
C got resource at 6

	Process A requests the resource with priority 0. It immediately becomes
a user.

	Process B requests the resource with priority -2 but sets preempt to
False. It will queue up and wait.

	Process C requests the resource with priority -1 but leaves preempt
True. Normally, it would preempt A but in this case, B is queued up
before C and prevents C from preempting A. C can also not preempt
B since its priority is not high enough.

Thus, the behavior in the example is the same as if no preemption was used at
all. Be careful when using mixed preemption!

Due to the higher priority of process B, no preemption occurs in this
example. Note that an additional request with a priority of -3 would be able
to preempt A.

If your use-case requires a different behaviour, for example queue-jumping or
valuing preemption over priorities, you can subclass PreemptiveResource and
override the default behaviour.

Containers

Containers help you modelling the production and consumption of a homogeneous,
undifferentiated bulk. It may either be continuous (like water) or discrete
(like apples).

You can use this, for example, to model the gas / petrol tank of a gas station.
Tankers increase the amount of gasoline in the tank while cars decrease it.

The following example is a very simple model of a gas station with a limited
number of fuel dispensers (modeled as Resource) and a tank modeled as
Container:

>>> class GasStation:
... def __init__(self, env):
... self.fuel_dispensers = simpy.Resource(env, capacity=2)
... self.gas_tank = simpy.Container(env, init=100, capacity=1000)
... self.mon_proc = env.process(self.monitor_tank(env))
...
... def monitor_tank(self, env):
... while True:
... if self.gas_tank.level < 100:
... print('Calling tanker at %s' % env.now)
... env.process(tanker(env, self))
... yield env.timeout(15)
>>>
>>>
>>> def tanker(env, gas_station):
... yield env.timeout(10) # Need 10 Minutes to arrive
... print('Tanker arriving at %s' % env.now)
... amount = gas_station.gas_tank.capacity - gas_station.gas_tank.level
... yield gas_station.gas_tank.put(amount)
>>>
>>>
>>> def car(name, env, gas_station):
... print('Car %s arriving at %s' % (name, env.now))
... with gas_station.fuel_dispensers.request() as req:
... yield req
... print('Car %s starts refueling at %s' % (name, env.now))
... yield gas_station.gas_tank.get(40)
... yield env.timeout(5)
... print('Car %s done refueling at %s' % (name, env.now))
>>>
>>>
>>> def car_generator(env, gas_station):
... for i in range(4):
... env.process(car(i, env, gas_station))
... yield env.timeout(5)
>>>
>>>
>>> env = simpy.Environment()
>>> gas_station = GasStation(env)
>>> car_gen = env.process(car_generator(env, gas_station))
>>> env.run(35)
Car 0 arriving at 0
Car 0 starts refueling at 0
Car 1 arriving at 5
Car 0 done refueling at 5
Car 1 starts refueling at 5
Car 2 arriving at 10
Car 1 done refueling at 10
Car 2 starts refueling at 10
Calling tanker at 15
Car 3 arriving at 15
Car 3 starts refueling at 15
Tanker arriving at 25
Car 2 done refueling at 30
Car 3 done refueling at 30

Containers allow you to retrieve their current level as well as their
capacity (see GasStation.monitor_tank() and tanker()). You can also
access the list of waiting events via the put_queue and get_queue
attributes (similar to Resource.queue).

Stores

Using Stores you can model the production and consumption of concrete objects
(in contrast to the rather abstract “amount” stored in containers). A single
Store can even contain multiple types of objects.

Beside Store, there is a FilterStore that lets you use
a custom function to filter the objects you get out of the store.

Here is a simple example modelling a generic producer/consumer scenario:

>>> def producer(env, store):
... for i in range(100):
... yield env.timeout(2)
... yield store.put('spam %s' % i)
... print('Produced spam at', env.now)
>>>
>>>
>>> def consumer(name, env, store):
... while True:
... yield env.timeout(1)
... print(name, 'requesting spam at', env.now)
... item = yield store.get()
... print(name, 'got', item, 'at', env.now)
>>>
>>>
>>> env = simpy.Environment()
>>> store = simpy.Store(env, capacity=2)
>>>
>>> prod = env.process(producer(env, store))
>>> consumers = [env.process(consumer(i, env, store)) for i in range(2)]
>>>
>>> env.run(until=5)
0 requesting spam at 1
1 requesting spam at 1
Produced spam at 2
0 got spam 0 at 2
0 requesting spam at 3
Produced spam at 4
1 got spam 1 at 4

As with the other resource types, you can get a store’s capacity via the
capacity attribute. The attribute items points to the list of items
currently available in the store. The put and get queues can be accessed via
the put_queue and get_queue attributes.

FilterStore can, for example, be used to model machine shops where machines
have varying attributes. This can be useful if the homogeneous slots of
a Resource are not what you need:

>>> from collections import namedtuple
>>>
>>> Machine = namedtuple('Machine', 'size, duration')
>>> m1 = Machine(1, 2) # Small and slow
>>> m2 = Machine(2, 1) # Big and fast
>>>
>>> env = simpy.Environment()
>>> machine_shop = simpy.FilterStore(env, capacity=2)
>>> machine_shop.items = [m1, m2] # Pre-populate the machine shop
>>>
>>> def user(name, env, ms, size):
... machine = yield ms.get(lambda machine: machine.size == size)
... print(name, 'got', machine, 'at', env.now)
... yield env.timeout(machine.duration)
... yield ms.put(machine)
... print(name, 'released', machine, 'at', env.now)
>>>
>>>
>>> users = [env.process(user(i, env, machine_shop, (i % 2) + 1))
... for i in range(3)]
>>> env.run()
0 got Machine(size=1, duration=2) at 0
1 got Machine(size=2, duration=1) at 0
1 released Machine(size=2, duration=1) at 1
0 released Machine(size=1, duration=2) at 2
2 got Machine(size=1, duration=2) at 2
2 released Machine(size=1, duration=2) at 4

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Real-time simulations

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Real-time simulations

Sometimes, you might not want to perform a simulation as fast as possible but
synchronous to the wall-clock time. This kind of simulation is also called
real-time simulation.

Real-time simulations may be necessary

	if you have hardware-in-the-loop,

	if there is human interaction with your simulation, or

	if you want to analyze the real-time behavior of an algorithm.

To convert a simulation into a real-time simulation, you only need to replace
SimPy’s default Environment with
a simpy.rt.RealtimeEnvironment. Apart from the initial_time
argument, there are two additional parameters: factor and strict:
RealtimeEnvironment(initial_time=0, factor=1.0, strict=True).

The factor defines how much real time passes with each step of simulation
time. By default, this is one second. If you set factor=0.1, a unit of
simulation time will only take a tenth of a second; if you set factor=60,
it will take a minute.

Here is a simple example for converting a normal simulation to a real-time
simulation with a duration of one tenth of a second per simulation time unit:

>>> import time
>>> import simpy
>>>
>>> def example(env):
... start = time.perf_counter()
... yield env.timeout(1)
... end = time.perf_counter()
... print('Duration of one simulation time unit: %.2fs' % (end - start))
>>>
>>> env = simpy.Environment()
>>> proc = env.process(example(env))
>>> env.run(until=proc)
Duration of one simulation time unit: 0.00s
>>>
>>> import simpy.rt
>>> env = simpy.rt.RealtimeEnvironment(factor=0.1)
>>> proc = env.process(example(env))
>>> env.run(until=proc)
Duration of one simulation time unit: 0.10s

If the strict parameter is set to True (the default), the step() and
run() methods will raise a RuntimeError if the computation within
a simulation time step take more time than the real-time factor allows. In the
following example, a process will perform a task that takes 0.02 seconds within
a real-time environment with a time factor of 0.01 seconds:

>>> import time
>>> import simpy.rt
>>>
>>> def slow_proc(env):
... time.sleep(0.02) # Heavy computation :-)
... yield env.timeout(1)
>>>
>>> env = simpy.rt.RealtimeEnvironment(factor=0.01)
>>> proc = env.process(slow_proc(env))
>>> try:
... env.run(until=proc)
... print('Everything alright')
... except RuntimeError:
... print('Simulation is too slow')
Simulation is too slow

To suppress the error, simply set strict=False:

>>> env = simpy.rt.RealtimeEnvironment(factor=0.01, strict=False)
>>> proc = env.process(slow_proc(env))
>>> try:
... env.run(until=proc)
... print('Everything alright')
... except RuntimeError:
... print('Simulation is too slow')
Everything alright

That’s it. Real-time simulations are that simple with SimPy!

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Porting from SimPy 2 to 3

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Topical Guides

Porting from SimPy 2 to 3

Porting from SimPy 2 to SimPy 3 is not overly complicated. A lot of changes
merely comprise copy/paste.

This guide describes the conceptual and API changes between both SimPy versions
and shows you how to change your code for SimPy 3.

Imports

In SimPy 2, you had to decide at import-time whether you wanted to use a normal
simulation (SimPy.Simulation), a real-time simulation
(SimPy.SimulationRT) or something else. You usually had to import
Simulation (or SimulationRT), Process and some of the SimPy
keywords (hold or passivate, for example) from that package.

In SimPy 3, you usually need to import much less classes and modules (for
example, all keywords are gone). In most use cases you will now only need to
import simpy.

SimPy 2

from Simpy.Simulation import Simulation, Process, hold

SimPy 3

import simpy

The Simulation* classes

SimPy 2 encapsulated the simulation state in a Simulation* class (e.g.,
Simulation, SimulationRT or SimulationTrace). This
class also had a simulate() method that executed a normal simulation,
a real-time simulation or something else (depending on the particular class).

There was a global Simulation instance that was automatically created when
you imported SimPy. You could also instantiate it on your own to uses SimPy’s
object-orient API. This led to some confusion and problems, because you had to
pass the Simulation instance around when you were using the object-oriented
API but not if you were using the procedural API.

In SimPy 3, an Environment replaces Simulation and
RealtimeEnvironment replaces SimulationRT. You always
need to instantiate an environment. There’s no more global state.

To execute a simulation, you call the environment’s
run() method.

SimPy 2

Procedural API
from SimPy.Simulation import initialize, simulate

initialize()
Start processes
simulate(until=10)

Object-oriented API
from SimPy.Simulation import Simulation

sim = Simulation()
Start processes
sim.simulate(until=10)

SimPy3

import simpy

env = simpy.Environment()
Start processes
env.run(until=10)

Defining a Process

Processes had to inherit the Process base class in SimPy 2. Subclasses had
to implement at least a so called Process Execution Method (PEM) (which is
basically a generator function) and in most cases __init__(). Each process
needed to know the Simulation instance it belonged to. This reference was
passed implicitly in the procedural API and had to be passed explicitly in the
object-oriented API. Apart from some internal problems, this made it quite
cumbersome to define a simple process.

Processes were started by passing the Process and a generator instance
created by the generator function to either the global activate() function
or the corresponding Simulation method.

A process in SimPy 3 is a Python generator (no matter if it’s defined on module
level or as an instance method) wrapped in a Process
instance. The generator usually requires a reference to a
Environment to interact with, but this is completely
optional.

Processes are can be started by creating a Process
instance and passing the generator to it. The environment provides a shortcut
for this: process().

SimPy 2

Procedural API
from Simpy.Simulation import Process

class MyProcess(Process):
 def __init__(self, another_param):
 super().__init__()
 self.another_param = another_param

 def generator_function(self):
 """Implement the process' behavior."""
 yield something

initialize()
proc = Process('Spam')
activate(proc, proc.generator_function())

Object-oriented API
from SimPy.Simulation import Simulation, Process

class MyProcess(Process):
 def __init__(self, sim, another_param):
 super().__init__(sim=sim)
 self.another_param = another_param

 def generator_function(self):
 """Implement the process' behaviour."""
 yield something

sim = Simulation()
proc = Process(sim, 'Spam')
sim.activate(proc, proc.generator_function())

SimPy 3

import simpy

def generator_function(env, another_param):
 """Implement the process' behavior."""
 yield something

env = simpy.Environment()
proc = env.process(generator_function(env, 'Spam'))

SimPy Keywords (hold etc.)

In SimPy 2, processes created new events by yielding a SimPy Keyword and some
additional parameters (at least self). These keywords had to be imported
from SimPy.Simulation* if they were used. Internally, the keywords were
mapped to a function that generated the according event.

In SimPy 3, you directly yield events if you want to wait for an
event to occur. You can instantiate an event directly or use the shortcuts
provided by Environment.

Generally, whenever a process yields an event, the execution of the process is
suspended and resumed once the event has been triggered. To motivate this
understanding, some of the events were renamed. For example, the hold
keyword meant to wait until some time has passed. In terms of events this means
that a timeout has happened. Therefore hold has been replaced by a
Timeout event.

Note

Process is also an Event. If
you want to wait for a process to finish, simply yield it.

SimPy 2

yield hold, self, duration
yield passivate, self
yield request, self, resource
yield release, self, resource
yield waitevent, self, event
yield waitevent, self, [event_a, event_b, event_c]
yield queueevent, self, event_list
yield get, self, level, amount
yield put, self, level, amount

SimPy 3

yield env.timeout(duration) # hold: renamed
yield env.event() # passivate: renamed
yield resource.request() # Request is now bound to class Resource
resource.release() # Release no longer needs to be yielded
yield event # waitevent: just yield the event
yield env.all_of([event_a, event_b, event_c]) # waitvent
yield env.any_of([event_a, event_b, event_c]) # queuevent
yield container.get(amount) # Level is now called Container
yield container.put(amount)

yield event_a | event_b # Wait for either a or b. This is new.
yield event_a & event_b # Wait for a and b. This is new.
yield env.process(calculation(env)) # Wait for the process calculation to
 # to finish.

Partially supported features

The following waituntil keyword is not completely supported anymore:

yield waituntil, self, cond_func

SimPy 2 was evaluating cond_func after every event, which was
computationally very expensive. One possible workaround is for example the
following process, which evaluates cond_func periodically:

def waituntil(env, cond_func, delay=1):
 while not cond_func():
 yield env.timeout(delay)

Usage:
yield waituntil(env, cond_func)

Interrupts

In SimPy 2, interrupt() was a method of the interrupting process. The
victim of the interrupt had to be passed as an argument.

The victim was not directly notified of the interrupt but had to check if the
interrupted flag was set. Afterwards, it had to reset the interrupt via
interruptReset(). You could manually set the interruptCause attribute
of the victim.

Explicitly checking for an interrupt is obviously error prone as it is too easy
to be forgotten.

In SimPy 3, you call interrupt() on the victim
process. You can optionally supply a cause. An Interrupt
is then thrown into the victim process, which has to handle the interrupt via
try: ... except Interrupt:

SimPy 2

class Interrupter(Process):
 def __init__(self, victim):
 super().__init__()
 self.victim = victim

 def run(self):
 yield hold, self, 1
 self.interrupt(self.victim_proc)
 self.victim_proc.interruptCause = 'Spam'

class Victim(Process):
 def run(self):
 yield hold, self, 10
 if self.interrupted:
 cause = self.interruptCause
 self.interruptReset()

SimPy 3

def interrupter(env, victim_proc):
 yield env.timeout(1)
 victim_proc.interrupt('Spam')

def victim(env):
 try:
 yield env.timeout(10)
 except Interrupt as interrupt:
 cause = interrupt.cause

Conclusion

This guide is by no means complete. If you run into problems, please have
a look at the other guides, the examples or the API Reference. You are also very
welcome to submit improvements. Just create a pull request at bitbucket [https://bitbucket.org/simpy/simpy/].

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

Examples

All theory is grey. In this section, we present various practical examples that
demonstrate how to uses SimPy’s features.

Here’s a list of examples grouped by features they demonstrate.

Condition events

	Bank Renege

	Movie Renege

Interrupts

	Machine Shop

Monitoring

Resources: Container

	Gas Station Refueling

Resources: Preemptive Resource

	Machine Shop

Resources: Resource

	Bank Renege

	Carwash

	Gas Station Refueling

	Movie Renege

Resources: Store

	Event Latency

	Process Communication

Shared events

	Movie Renege

Waiting for other processes

	Carwash

	Gas Station Refueling

All examples

	Bank Renege

	Carwash

	Machine Shop

	Movie Renege

	Gas Station Refueling

	Process Communication

	Event Latency

You have ideas for better examples? Please send them to our mainling list [https://lists.sourceforge.net/lists/listinfo/simpy-users] or make a pull
request on bitbucket [https://bitbucket.org/simpy/simpy].

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Bank Renege

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Bank Renege

Covers:

	Resources: Resource

	Condition events

A counter with a random service time and customers who renege. Based on the
program bank08.py from TheBank tutorial of SimPy 2. (KGM)

This example models a bank counter and customers arriving t random times. Each
customer has a certain patience. It waits to get to the counter until she’s at
the end of her tether. If she gets to the counter, she uses it for a while
before releasing it.

New customers are created by the source process every few time steps.

"""
Bank renege example

Covers:

- Resources: Resource
- Condition events

Scenario:
 A counter with a random service time and customers who renege. Based on the
 program bank08.py from TheBank tutorial of SimPy 2. (KGM)

"""
import random

import simpy

RANDOM_SEED = 42
NEW_CUSTOMERS = 5 # Total number of customers
INTERVAL_CUSTOMERS = 10.0 # Generate new customers roughly every x seconds
MIN_PATIENCE = 1 # Min. customer patience
MAX_PATIENCE = 3 # Max. customer patience

def source(env, number, interval, counter):
 """Source generates customers randomly"""
 for i in range(number):
 c = customer(env, 'Customer%02d' % i, counter, time_in_bank=12.0)
 env.process(c)
 t = random.expovariate(1.0 / interval)
 yield env.timeout(t)

def customer(env, name, counter, time_in_bank):
 """Customer arrives, is served and leaves."""
 arrive = env.now
 print('%7.4f %s: Here I am' % (arrive, name))

 with counter.request() as req:
 patience = random.uniform(MIN_PATIENCE, MAX_PATIENCE)
 # Wait for the counter or abort at the end of our tether
 results = yield req | env.timeout(patience)

 wait = env.now - arrive

 if req in results:
 # We got to the counter
 print('%7.4f %s: Waited %6.3f' % (env.now, name, wait))

 tib = random.expovariate(1.0 / time_in_bank)
 yield env.timeout(tib)
 print('%7.4f %s: Finished' % (env.now, name))

 else:
 # We reneged
 print('%7.4f %s: RENEGED after %6.3f' % (env.now, name, wait))

Setup and start the simulation
print('Bank renege')
random.seed(RANDOM_SEED)
env = simpy.Environment()

Start processes and run
counter = simpy.Resource(env, capacity=1)
env.process(source(env, NEW_CUSTOMERS, INTERVAL_CUSTOMERS, counter))
env.run()

The simulation’s output:

Bank renege
 0.0000 Customer00: Here I am
 0.0000 Customer00: Waited 0.000
 3.8595 Customer00: Finished
10.2006 Customer01: Here I am
10.2006 Customer01: Waited 0.000
12.7265 Customer02: Here I am
13.9003 Customer02: RENEGED after 1.174
23.7507 Customer01: Finished
34.9993 Customer03: Here I am
34.9993 Customer03: Waited 0.000
37.9599 Customer03: Finished
40.4798 Customer04: Here I am
40.4798 Customer04: Waited 0.000
43.1401 Customer04: Finished

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Carwash

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Carwash

Covers:

	Waiting for other processes

	Resources: Resource

The Carwash example is a simulation of a carwash with a limited number of
machines and a number of cars that arrive at the carwash to get cleaned.

The carwash uses a Resource to model the
limited number of washing machines. It also defines a process for washing
a car.

When a car arrives at the carwash, it requests a machine. Once it got one, it
starts the carwash’s wash processes and waits for it to finish. It finally
releases the machine and leaves.

The cars are generated by a setup process. After creating an intial amount of
cars it creates new car processes after a random time interval as long as the
simulation continues.

"""
Carwash example.

Covers:

- Waiting for other processes
- Resources: Resource

Scenario:
 A carwash has a limited number of washing machines and defines
 a washing processes that takes some (random) time.

 Car processes arrive at the carwash at a random time. If one washing
 machine is available, they start the washing process and wait for it
 to finish. If not, they wait until they an use one.

"""
import random

import simpy

RANDOM_SEED = 42
NUM_MACHINES = 2 # Number of machines in the carwash
WASHTIME = 5 # Minutes it takes to clean a car
T_INTER = 7 # Create a car every ~7 minutes
SIM_TIME = 20 # Simulation time in minutes

class Carwash(object):
 """A carwash has a limited number of machines (``NUM_MACHINES``) to
 clean cars in parallel.

 Cars have to request one of the machines. When they got one, they
 can start the washing processes and wait for it to finish (which
 takes ``washtime`` minutes).

 """
 def __init__(self, env, num_machines, washtime):
 self.env = env
 self.machine = simpy.Resource(env, num_machines)
 self.washtime = washtime

 def wash(self, car):
 """The washing processes. It takes a ``car`` processes and tries
 to clean it."""
 yield self.env.timeout(WASHTIME)
 print("Carwash removed %d%% of %s's dirt." %
 (random.randint(50, 99), car))

def car(env, name, cw):
 """The car process (each car has a ``name``) arrives at the carwash
 (``cw``) and requests a cleaning machine.

 It then starts the washing process, waits for it to finish and
 leaves to never come back ...

 """
 print('%s arrives at the carwash at %.2f.' % (name, env.now))
 with cw.machine.request() as request:
 yield request

 print('%s enters the carwash at %.2f.' % (name, env.now))
 yield env.process(cw.wash(name))

 print('%s leaves the carwash at %.2f.' % (name, env.now))

def setup(env, num_machines, washtime, t_inter):
 """Create a carwash, a number of initial cars and keep creating cars
 approx. every ``t_inter`` minutes."""
 # Create the carwash
 carwash = Carwash(env, num_machines, washtime)

 # Create 4 initial cars
 for i in range(4):
 env.process(car(env, 'Car %d' % i, carwash))

 # Create more cars while the simulation is running
 while True:
 yield env.timeout(random.randint(t_inter-2, t_inter+2))
 i += 1
 env.process(car(env, 'Car %d' % i, carwash))

Setup and start the simulation
print('Carwash')
print('Check out http://youtu.be/fXXmeP9TvBg while simulating ... ;-)')
random.seed(RANDOM_SEED) # This helps reproducing the results

Create an environment and start the setup process
env = simpy.Environment()
env.process(setup(env, NUM_MACHINES, WASHTIME, T_INTER))

Execute!
env.run(until=SIM_TIME)

The simulation’s output:

Carwash
Check out http://youtu.be/fXXmeP9TvBg while simulating ... ;-)
Car 0 arrives at the carwash at 0.00.
Car 1 arrives at the carwash at 0.00.
Car 2 arrives at the carwash at 0.00.
Car 3 arrives at the carwash at 0.00.
Car 0 enters the carwash at 0.00.
Car 1 enters the carwash at 0.00.
Car 4 arrives at the carwash at 5.00.
Carwash removed 97% of Car 0's dirt.
Carwash removed 67% of Car 1's dirt.
Car 0 leaves the carwash at 5.00.
Car 1 leaves the carwash at 5.00.
Car 2 enters the carwash at 5.00.
Car 3 enters the carwash at 5.00.
Car 5 arrives at the carwash at 10.00.
Carwash removed 64% of Car 2's dirt.
Carwash removed 58% of Car 3's dirt.
Car 2 leaves the carwash at 10.00.
Car 3 leaves the carwash at 10.00.
Car 4 enters the carwash at 10.00.
Car 5 enters the carwash at 10.00.
Carwash removed 97% of Car 4's dirt.
Carwash removed 56% of Car 5's dirt.
Car 4 leaves the carwash at 15.00.
Car 5 leaves the carwash at 15.00.
Car 6 arrives at the carwash at 16.00.
Car 6 enters the carwash at 16.00.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Machine Shop

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Machine Shop

Covers:

	Interrupts

	Resources: PreemptiveResource

This example comprises a workshop with n identical machines. A stream of jobs
(enough to keep the machines busy) arrives. Each machine breaks down
periodically. Repairs are carried out by one repairman. The repairman has
other, less important tasks to perform, too. Broken machines preempt theses
tasks. The repairman continues them when he is done with the machine repair.
The workshop works continuously.

A machine has two processes: working implements the actual behaviour of the
machine (producing parts). break_machine periodically interrupts the
working process to simulate the machine failure.

The repairman’s other job is also a process (implemented by other_job). The
repairman itself is a PreemptiveResource
with a capacity of 1. The machine repairing has a priority of 1, while the
other job has a priority of 2 (the smaller the number, the higher the
priority).

"""
Machine shop example

Covers:

- Interrupts
- Resources: PreemptiveResource

Scenario:
 A workshop has *n* identical machines. A stream of jobs (enough to
 keep the machines busy) arrives. Each machine breaks down
 periodically. Repairs are carried out by one repairman. The repairman
 has other, less important tasks to perform, too. Broken machines
 preempt theses tasks. The repairman continues them when he is done
 with the machine repair. The workshop works continuously.

"""
import random

import simpy

RANDOM_SEED = 42
PT_MEAN = 10.0 # Avg. processing time in minutes
PT_SIGMA = 2.0 # Sigma of processing time
MTTF = 300.0 # Mean time to failure in minutes
BREAK_MEAN = 1 / MTTF # Param. for expovariate distribution
REPAIR_TIME = 30.0 # Time it takes to repair a machine in minutes
JOB_DURATION = 30.0 # Duration of other jobs in minutes
NUM_MACHINES = 10 # Number of machines in the machine shop
WEEKS = 4 # Simulation time in weeks
SIM_TIME = WEEKS * 7 * 24 * 60 # Simulation time in minutes

def time_per_part():
 """Return actual processing time for a concrete part."""
 return random.normalvariate(PT_MEAN, PT_SIGMA)

def time_to_failure():
 """Return time until next failure for a machine."""
 return random.expovariate(BREAK_MEAN)

class Machine(object):
 """A machine produces parts and my get broken every now and then.

 If it breaks, it requests a *repairman* and continues the production
 after the it is repaired.

 A machine has a *name* and a numberof *parts_made* thus far.

 """
 def __init__(self, env, name, repairman):
 self.env = env
 self.name = name
 self.parts_made = 0
 self.broken = False

 # Start "working" and "break_machine" processes for this machine.
 self.process = env.process(self.working(repairman))
 env.process(self.break_machine())

 def working(self, repairman):
 """Produce parts as long as the simulation runs.

 While making a part, the machine may break multiple times.
 Request a repairman when this happens.

 """
 while True:
 # Start making a new part
 done_in = time_per_part()
 while done_in:
 try:
 # Working on the part
 start = self.env.now
 yield self.env.timeout(done_in)
 done_in = 0 # Set to 0 to exit while loop.

 except simpy.Interrupt:
 self.broken = True
 done_in -= self.env.now - start # How much time left?

 # Request a repairman. This will preempt its "other_job".
 with repairman.request(priority=1) as req:
 yield req
 yield self.env.timeout(REPAIR_TIME)

 self.broken = False

 # Part is done.
 self.parts_made += 1

 def break_machine(self):
 """Break the machine every now and then."""
 while True:
 yield self.env.timeout(time_to_failure())
 if not self.broken:
 # Only break the machine if it is currently working.
 self.process.interrupt()

def other_jobs(env, repairman):
 """The repairman's other (unimportant) job."""
 while True:
 # Start a new job
 done_in = JOB_DURATION
 while done_in:
 # Retry the job until it is done.
 # It's priority is lower than that of machine repairs.
 with repairman.request(priority=2) as req:
 yield req
 try:
 start = env.now
 yield env.timeout(done_in)
 done_in = 0
 except simpy.Interrupt:
 done_in -= env.now - start

Setup and start the simulation
print('Machine shop')
random.seed(RANDOM_SEED) # This helps reproducing the results

Create an environment and start the setup process
env = simpy.Environment()
repairman = simpy.PreemptiveResource(env, capacity=1)
machines = [Machine(env, 'Machine %d' % i, repairman)
 for i in range(NUM_MACHINES)]
env.process(other_jobs(env, repairman))

Execute!
env.run(until=SIM_TIME)

Analyis/results
print('Machine shop results after %s weeks' % WEEKS)
for machine in machines:
 print('%s made %d parts.' % (machine.name, machine.parts_made))

The simulation’s output:

Machine shop
Machine shop results after 4 weeks
Machine 0 made 3251 parts.
Machine 1 made 3273 parts.
Machine 2 made 3242 parts.
Machine 3 made 3343 parts.
Machine 4 made 3387 parts.
Machine 5 made 3244 parts.
Machine 6 made 3269 parts.
Machine 7 made 3185 parts.
Machine 8 made 3302 parts.
Machine 9 made 3279 parts.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Movie Renege

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Movie Renege

Covers:

	Resources: Resource

	Condition events

	Shared events

This examples models a movie theater with one ticket counter selling tickets
for three movies (next show only). People arrive at random times and triy to
buy a random number (1–6) tickets for a random movie. When a movie is sold
out, all people waiting to buy a ticket for that movie renege (leave the
queue).

The movie theater is just a container for all the related data (movies, the
counter, tickets left, collected data, ...). The counter is
a Resource with a capacity of one.

The moviegoer process starts waiting until either it’s his turn (it acquires
the counter resource) or until the sold out signal is triggered. If the
latter is the case it reneges (leaves the queue). If it gets to the counter,
it tries to buy some tickets. This might not be successful, e.g. if the process
tries to buy 5 tickets but only 3 are left. If less then two tickets are left
after the ticket purchase, the sold out signal is triggered.

Moviegoers are generated by the customer arrivals process. It also chooses a
movie and the number of tickets for the moviegoer.

"""
Movie renege example

Covers:

- Resources: Resource
- Condition events
- Shared events

Scenario:
 A movie theatre has one ticket counter selling tickets for three
 movies (next show only). When a movie is sold out, all people waiting
 to buy tickets for that movie renege (leave queue).

"""
import collections
import random

import simpy

RANDOM_SEED = 42
TICKETS = 50 # Number of tickets per movie
SIM_TIME = 120 # Simulate until

def moviegoer(env, movie, num_tickets, theater):
 """A moviegoer tries to by a number of tickets (*num_tickets*) for
 a certain *movie* in a *theater*.

 If the movie becomes sold out, she leaves the theater. If she gets
 to the counter, she tries to buy a number of tickets. If not enough
 tickets are left, she argues with the teller and leaves.

 If at most one ticket is left after the moviegoer bought her
 tickets, the *sold out* event for this movie is triggered causing
 all remaining moviegoers to leave.

 """
 with theater.counter.request() as my_turn:
 # Wait until its our turn or until the movie is sold out
 result = yield my_turn | theater.sold_out[movie]

 # Check if it's our turn of if movie is sold out
 if my_turn not in result:
 theater.num_renegers[movie] += 1
 env.exit()

 # Check if enough tickets left.
 if theater.available[movie] < num_tickets:
 # Moviegoer leaves after some discussion
 yield env.timeout(0.5)
 env.exit()

 # Buy tickets
 theater.available[movie] -= num_tickets
 if theater.available[movie] < 2:
 # Trigger the "sold out" event for the movie
 theater.sold_out[movie].succeed()
 theater.when_sold_out[movie] = env.now
 theater.available[movie] = 0
 yield env.timeout(1)

def customer_arrivals(env, theater):
 """Create new *moviegoers* until the sim time reaches 120."""
 while True:
 yield env.timeout(random.expovariate(1 / 0.5))

 movie = random.choice(theater.movies)
 num_tickets = random.randint(1, 6)
 if theater.available[movie]:
 env.process(moviegoer(env, movie, num_tickets, theater))

Theater = collections.namedtuple('Theater', 'counter, movies, available, '
 'sold_out, when_sold_out, '
 'num_renegers')

Setup and start the simulation
print('Movie renege')
random.seed(RANDOM_SEED)
env = simpy.Environment()

Create movie theater
counter = simpy.Resource(env, capacity=1)
movies = ['Python Unchained', 'Kill Process', 'Pulp Implementation']
available = {movie: TICKETS for movie in movies}
sold_out = {movie: env.event() for movie in movies}
when_sold_out = {movie: None for movie in movies}
num_renegers = {movie: 0 for movie in movies}
theater = Theater(counter, movies, available, sold_out, when_sold_out,
 num_renegers)

Start process and run
env.process(customer_arrivals(env, theater))
env.run(until=SIM_TIME)

Analysis/results
for movie in movies:
 if theater.sold_out[movie]:
 print('Movie "%s" sold out %.1f minutes after ticket counter '
 'opening.' % (movie, theater.when_sold_out[movie]))
 print(' Number of people leaving queue when film sold out: %s' %
 theater.num_renegers[movie])

The simulation’s output:

Movie renege
Movie "Python Unchained" sold out 38.0 minutes after ticket counter opening.
 Number of people leaving queue when film sold out: 16
Movie "Kill Process" sold out 43.0 minutes after ticket counter opening.
 Number of people leaving queue when film sold out: 5
Movie "Pulp Implementation" sold out 28.0 minutes after ticket counter opening.
 Number of people leaving queue when film sold out: 5

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Gas Station Refueling

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Gas Station Refueling

Covers:

	Resources: Resource

	Resources: Container

	Waiting for other processes

This examples models a gas station and cars that arrive at the station for
refueling.

The gas station has a limited number of fuel pumps and a fuel tank that is
shared between the fuel pumps. The gas station is thus modeled as
Resource. The shared fuel tank is modeled
with a Container.

Vehicles arriving at the gas station first request a fuel pump from the
station. Once they acquire one, they try to take the desired amount of fuel
from the fuel pump. They leave when they are done.

The gas stations fuel level is reqularly monitored by gas station control.
When the level drops below a certain threshold, a tank truck is called to
refuel the gas station itself.

"""
Gas Station Refueling example

Covers:

- Resources: Resource
- Resources: Container
- Waiting for other processes

Scenario:
 A gas station has a limited number of gas pumps that share a common
 fuel reservoir. Cars randomly arrive at the gas station, request one
 of the fuel pumps and start refueling from that reservoir.

 A gas station control process observes the gas station's fuel level
 and calls a tank truck for refueling if the station's level drops
 below a threshold.

"""
import itertools
import random

import simpy

RANDOM_SEED = 42
GAS_STATION_SIZE = 200 # liters
THRESHOLD = 10 # Threshold for calling the tank truck (in %)
FUEL_TANK_SIZE = 50 # liters
FUEL_TANK_LEVEL = [5, 25] # Min/max levels of fuel tanks (in liters)
REFUELING_SPEED = 2 # liters / second
TANK_TRUCK_TIME = 300 # Seconds it takes the tank truck to arrive
T_INTER = [30, 300] # Create a car every [min, max] seconds
SIM_TIME = 1000 # Simulation time in seconds

def car(name, env, gas_station, fuel_pump):
 """A car arrives at the gas station for refueling.

 It requests one of the gas station's fuel pumps and tries to get the
 desired amount of gas from it. If the stations reservoir is
 depleted, the car has to wait for the tank truck to arrive.

 """
 fuel_tank_level = random.randint(*FUEL_TANK_LEVEL)
 print('%s arriving at gas station at %.1f' % (name, env.now))
 with gas_station.request() as req:
 start = env.now
 # Request one of the gas pumps
 yield req

 # Get the required amount of fuel
 liters_required = FUEL_TANK_SIZE - fuel_tank_level
 yield fuel_pump.get(liters_required)

 # The "actual" refueling process takes some time
 yield env.timeout(liters_required / REFUELING_SPEED)

 print('%s finished refueling in %.1f seconds.' % (name,
 env.now - start))

def gas_station_control(env, fuel_pump):
 """Periodically check the level of the *fuel_pump* and call the tank
 truck if the level falls below a threshold."""
 while True:
 if fuel_pump.level / fuel_pump.capacity * 100 < THRESHOLD:
 # We need to call the tank truck now!
 print('Calling tank truck at %d' % env.now)
 # Wait for the tank truck to arrive and refuel the station
 yield env.process(tank_truck(env, fuel_pump))

 yield env.timeout(10) # Check every 10 seconds

def tank_truck(env, fuel_pump):
 """Arrives at the gas station after a certain delay and refuels it."""
 yield env.timeout(TANK_TRUCK_TIME)
 print('Tank truck arriving at time %d' % env.now)
 ammount = fuel_pump.capacity - fuel_pump.level
 print('Tank truck refuelling %.1f liters.' % ammount)
 yield fuel_pump.put(ammount)

def car_generator(env, gas_station, fuel_pump):
 """Generate new cars that arrive at the gas station."""
 for i in itertools.count():
 yield env.timeout(random.randint(*T_INTER))
 env.process(car('Car %d' % i, env, gas_station, fuel_pump))

Setup and start the simulation
print('Gas Station refuelling')
random.seed(RANDOM_SEED)

Create environment and start processes
env = simpy.Environment()
gas_station = simpy.Resource(env, 2)
fuel_pump = simpy.Container(env, GAS_STATION_SIZE, init=GAS_STATION_SIZE)
env.process(gas_station_control(env, fuel_pump))
env.process(car_generator(env, gas_station, fuel_pump))

Execute!
env.run(until=SIM_TIME)

The simulation’s output:

Gas Station refuelling
Car 0 arriving at gas station at 87.0
Car 0 finished refueling in 18.5 seconds.
Car 1 arriving at gas station at 129.0
Car 1 finished refueling in 19.0 seconds.
Car 2 arriving at gas station at 284.0
Car 2 finished refueling in 21.0 seconds.
Car 3 arriving at gas station at 385.0
Car 3 finished refueling in 13.5 seconds.
Car 4 arriving at gas station at 459.0
Calling tank truck at 460
Car 4 finished refueling in 22.0 seconds.
Car 5 arriving at gas station at 705.0
Car 6 arriving at gas station at 750.0
Tank truck arriving at time 760
Tank truck refuelling 188.0 liters.
Car 6 finished refueling in 29.0 seconds.
Car 5 finished refueling in 76.5 seconds.
Car 7 arriving at gas station at 891.0
Car 7 finished refueling in 13.0 seconds.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Process Communication

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Process Communication

Covers:

	Resources: Store

This example shows how to interconnect simulation model elements together using
“resources.Store” for one-to-one, and many-to-one asynchronous processes. For
one-to-many a simple BroadCastPipe class is constructed from Store.

	When Useful:

	When a consumer process does not always wait on a generating process
and these processes run asynchronously. This example shows how to
create a buffer and also tell is the consumer process was late
yielding to the event from a generating process.

This is also useful when some information needs to be broadcast to
many receiving processes

Finally, using pipes can simplify how processes are interconnected to
each other in a simulation model.

	Example By:

	Keith Smith

"""
Process communication example

Covers:

- Resources: Store

Scenario:
 This example shows how to interconnect simulation model elements
 together using :class:`~simpy.resources.store.Store` for one-to-one,
 and many-to-one asynchronous processes. For one-to-many a simple
 BroadCastPipe class is constructed from Store.

When Useful:
 When a consumer process does not always wait on a generating process
 and these processes run asynchronously. This example shows how to
 create a buffer and also tell is the consumer process was late
 yielding to the event from a generating process.

 This is also useful when some information needs to be broadcast to
 many receiving processes

 Finally, using pipes can simplify how processes are interconnected to
 each other in a simulation model.

Example By:
 Keith Smith

"""
import random

import simpy

RANDOM_SEED = 42
SIM_TIME = 100

class BroadcastPipe(object):
 """A Broadcast pipe that allows one process to send messages to many.

 This construct is useful when message consumers are running at
 different rates than message generators and provides an event
 buffering to the consuming processes.

 The parameters are used to create a new
 :class:`~simpy.resources.store.Store` instance each time
 :meth:`get_output_conn()` is called.

 """
 def __init__(self, env, capacity=simpy.core.Infinity):
 self.env = env
 self.capacity = capacity
 self.pipes = []

 def put(self, value):
 """Broadcast a *value* to all receivers."""
 if not self.pipes:
 raise RuntimeError('There are no output pipes.')
 events = [store.put(value) for store in self.pipes]
 return self.env.all_of(events) # Condition event for all "events"

 def get_output_conn(self):
 """Get a new output connection for this broadcast pipe.

 The return value is a :class:`~simpy.resources.store.Store`.

 """
 pipe = simpy.Store(self.env, capacity=self.capacity)
 self.pipes.append(pipe)
 return pipe

def message_generator(name, env, out_pipe):
 """A process which randomly generates messages."""
 while True:
 # wait for next transmission
 yield env.timeout(random.randint(6, 10))

 # messages are time stamped to later check if the consumer was
 # late getting them. Note, using event.triggered to do this may
 # result in failure due to FIFO nature of simulation yields.
 # (i.e. if at the same env.now, message_generator puts a message
 # in the pipe first and then message_consumer gets from pipe,
 # the event.triggered will be True in the other order it will be
 # False
 msg = (env.now, '%s says hello at %d' % (name, env.now))
 out_pipe.put(msg)

def message_consumer(name, env, in_pipe):
 """A process which consumes messages."""
 while True:
 # Get event for message pipe
 msg = yield in_pipe.get()

 if msg[0] < env.now:
 # if message was already put into pipe, then
 # message_consumer was late getting to it. Depending on what
 # is being modeled this, may, or may not have some
 # significance
 print('LATE Getting Message: at time %d: %s received message: %s' %
 (env.now, name, msg[1]))

 else:
 # message_consumer is synchronized with message_generator
 print('at time %d: %s received message: %s.' %
 (env.now, name, msg[1]))

 # Process does some other work, which may result in missing messages
 yield env.timeout(random.randint(4, 8))

Setup and start the simulation
print('Process communication')
random.seed(RANDOM_SEED)
env = simpy.Environment()

For one-to-one or many-to-one type pipes, use Store
pipe = simpy.Store(env)
env.process(message_generator('Generator A', env, pipe))
env.process(message_consumer('Consumer A', env, pipe))

print('\nOne-to-one pipe communication\n')
env.run(until=SIM_TIME)

For one-to many use BroadcastPipe
(Note: could also be used for one-to-one,many-to-one or many-to-many)
env = simpy.Environment()
bc_pipe = BroadcastPipe(env)

env.process(message_generator('Generator A', env, bc_pipe))
env.process(message_consumer('Consumer A', env, bc_pipe.get_output_conn()))
env.process(message_consumer('Consumer B', env, bc_pipe.get_output_conn()))

print('\nOne-to-many pipe communication\n')
env.run(until=SIM_TIME)

The simulation’s output:

Process communication

One-to-one pipe communication

at time 6: Consumer A received message: Generator A says hello at 6.
at time 12: Consumer A received message: Generator A says hello at 12.
at time 19: Consumer A received message: Generator A says hello at 19.
at time 26: Consumer A received message: Generator A says hello at 26.
at time 36: Consumer A received message: Generator A says hello at 36.
at time 46: Consumer A received message: Generator A says hello at 46.
at time 52: Consumer A received message: Generator A says hello at 52.
at time 58: Consumer A received message: Generator A says hello at 58.
LATE Getting Message: at time 66: Consumer A received message: Generator A says hello at 65
at time 75: Consumer A received message: Generator A says hello at 75.
at time 85: Consumer A received message: Generator A says hello at 85.
at time 95: Consumer A received message: Generator A says hello at 95.

One-to-many pipe communication

at time 10: Consumer A received message: Generator A says hello at 10.
at time 10: Consumer B received message: Generator A says hello at 10.
at time 18: Consumer A received message: Generator A says hello at 18.
at time 18: Consumer B received message: Generator A says hello at 18.
at time 27: Consumer A received message: Generator A says hello at 27.
at time 27: Consumer B received message: Generator A says hello at 27.
at time 34: Consumer A received message: Generator A says hello at 34.
at time 34: Consumer B received message: Generator A says hello at 34.
at time 40: Consumer A received message: Generator A says hello at 40.
LATE Getting Message: at time 41: Consumer B received message: Generator A says hello at 40
at time 46: Consumer A received message: Generator A says hello at 46.
LATE Getting Message: at time 47: Consumer B received message: Generator A says hello at 46
at time 56: Consumer A received message: Generator A says hello at 56.
at time 56: Consumer B received message: Generator A says hello at 56.
at time 65: Consumer A received message: Generator A says hello at 65.
at time 65: Consumer B received message: Generator A says hello at 65.
at time 74: Consumer A received message: Generator A says hello at 74.
at time 74: Consumer B received message: Generator A says hello at 74.
at time 82: Consumer A received message: Generator A says hello at 82.
at time 82: Consumer B received message: Generator A says hello at 82.
at time 92: Consumer A received message: Generator A says hello at 92.
at time 92: Consumer B received message: Generator A says hello at 92.
at time 98: Consumer B received message: Generator A says hello at 98.
at time 98: Consumer A received message: Generator A says hello at 98.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Event Latency

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	Examples

Event Latency

Covers:

	Resources: Store

This example shows how to separate the time delay of events between processes
from the processes themselves.

	When Useful:

	When modeling physical things such as cables, RF propagation, etc. it
better encapsulation to keep this propagation mechanism outside of the
sending and receiving processes.

Can also be used to interconnect processes sending messages

	Example by:

	Keith Smith

"""
Event Latency example

Covers:

- Resources: Store

Scenario:
 This example shows how to separate the time delay of events between
 processes from the processes themselves.

When Useful:
 When modeling physical things such as cables, RF propagation, etc. it
 better encapsulation to keep this propagation mechanism outside of the
 sending and receiving processes.

 Can also be used to interconnect processes sending messages

Example by:
 Keith Smith

"""
import simpy

SIM_DURATION = 100

class Cable(object):
 """This class represents the propagation through a cable."""
 def __init__(self, env, delay):
 self.env = env
 self.delay = delay
 self.store = simpy.Store(env)

 def latency(self, value):
 yield self.env.timeout(self.delay)
 self.store.put(value)

 def put(self, value):
 self.env.process(self.latency(value))

 def get(self):
 return self.store.get()

def sender(env, cable):
 """A process which randomly generates messages."""
 while True:
 # wait for next transmission
 yield env.timeout(5)
 cable.put('Sender sent this at %d' % env.now)

def receiver(env, cable):
 """A process which consumes messages."""
 while True:
 # Get event for message pipe
 msg = yield cable.get()
 print('Received this at %d while %s' % (env.now, msg))

Setup and start the simulation
print('Event Latency')
env = simpy.Environment()

cable = Cable(env, 10)
env.process(sender(env, cable))
env.process(receiver(env, cable))

env.run(until=SIM_DURATION)

The simulation’s output:

Event Latency
Received this at 15 while Sender sent this at 5
Received this at 20 while Sender sent this at 10
Received this at 25 while Sender sent this at 15
Received this at 30 while Sender sent this at 20
Received this at 35 while Sender sent this at 25
Received this at 40 while Sender sent this at 30
Received this at 45 while Sender sent this at 35
Received this at 50 while Sender sent this at 40
Received this at 55 while Sender sent this at 45
Received this at 60 while Sender sent this at 50
Received this at 65 while Sender sent this at 55
Received this at 70 while Sender sent this at 60
Received this at 75 while Sender sent this at 65
Received this at 80 while Sender sent this at 70
Received this at 85 while Sender sent this at 75
Received this at 90 while Sender sent this at 80
Received this at 95 while Sender sent this at 85

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 API Reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

API Reference

The API reference provides detailed descriptions of SimPy’s classes and
functions. It should be helpful if you plan to extend Simpy with custom
components.

	simpy

	simpy.core — SimPy’s core components

	simpy.events — Core event types

	simpy.resources — Shared resource primitives

	simpy.rt — Real-time simulation

	simpy.util — Utility functions for SimPy

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy

The simpy module aggregates SimPy’s most used components into a single
namespace. This is purely for convenience. You can of course also access
everything (and more!) via their actual submodules.

The following tables list all of the available components in this module.

Environments

	Environment([initial_time])
	Execution environment for an event-based simulation.

	RealtimeEnvironment([initial_time,factor,...])
	Execution environment for an event-based simulation which is synchronized with the real-time (also known as wall-clock time).

Events

	Event(env)
	An event that may happen at some point in time.

	Timeout(env,delay[,value])
	A Event that gets triggered after a delay has passed.

	Process(env,generator)
	Process an event yielding generator.

	AllOf(env,events)
	A Condition event that is triggered if all of a list of events have been successfully triggered.

	AnyOf(env,events)
	A Condition event that is triggered if any of a list of events has been successfully triggered.

	Interrupt
	Exception thrown into a process if it is interrupted (see interrupt()).

Resources

	Resource(env[,capacity])
	Resource with capacity of usage slots that can be requested by processes.

	PriorityResource(env[,capacity])
	A Resource supporting prioritized requests.

	PreemptiveResource(env[,capacity])
	A PriorityResource with preemption.

	Container(env[,capacity,init])
	Resource containing up to capacity of matter which may either be continuous (like water) or discrete (like apples).

	Store(env[,capacity])
	Resource with capacity slots for storing arbitrary objects.

	FilterStore(env[,capacity])
	Resource with capacity slots for storing arbitrary objects supporting filtered get requests.

Miscellaneous

	test()
	Runs SimPy’s test suite via py.test [http://pytest.org/latest/].

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy.core — SimPy’s core components

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy.core — SimPy’s core components

Core components for event-discrete simulation environments.

	
class simpy.core.BaseEnvironment

	Base class for event processing environments.

An implementation must at least provide the means to access the current
time of the environment (see now) and to schedule (see
schedule()) events as well as processing them (see step().

The class is meant to be subclassed for different execution environments.
For example, SimPy defines a Environment for simulations with
a virtual time and and a RealtimeEnvironment that
schedules and executes events in real (e.g., wallclock) time.

	
now

	The current time of the environment.

	
active_process

	The currently active process of the environment.

	
schedule(event, priority=1, delay=0)

	Schedule an event with a given priority and a delay.

There are two default priority values, URGENT and
NORMAL.

	
step()

	Processes the next event.

	
run(until=None)

	Executes step() until the given criterion until is met.

	If it is None (which is the default), this method will return
when there are no further events to be processed.

	If it is an Event, the method will continue
stepping until this event has been triggered and will return its
value.

	If it is a number, the method will continue stepping
until the environment’s time reaches until.

	
exit(value=None)

	Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to
3.3. From Python 3.3, you can instead use return value in
a process.

	
class simpy.core.Environment(initial_time=0)

	Execution environment for an event-based simulation. The passing of time
is simulated by stepping from event to event.

You can provide an initial_time for the environment. By default, it
starts at 0.

This class also provides aliases for common event types, for example
process, timeout and event.

	
now

	The current simulation time.

	
active_process

	The currently active process of the environment.

	
process(generator)

	Create a new Process instance for generator.

	
timeout(delay, value=None)

	Return a new Timeout event with a delay and,
optionally, a value.

	
event()

	Return a new Event instance. Yielding this event
suspends a process until another process triggers the event.

	
all_of(events)

	Return a new AllOf condition for a list of
events.

	
any_of(events)

	Return a new AnyOf condition for a list of
events.

	
exit(value=None)

	Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to
3.3. From Python 3.3, you can instead use return value in
a process.

	
schedule(event, priority=1, delay=0)

	Schedule an event with a given priority and a delay.

	
peek()

	Get the time of the next scheduled event. Return
Infinity if there is no further event.

	
step()

	Process the next event.

Raise an EmptySchedule if no further events are available.

	
run(until=None)

	Executes step() until the given criterion until is met.

	If it is None (which is the default), this method will return
when there are no further events to be processed.

	If it is an Event, the method will continue
stepping until this event has been triggered and will return its
value.

	If it is a number, the method will continue stepping
until the environment’s time reaches until.

	
class simpy.core.BoundClass(cls)

	Allows classes to behave like methods.

The __get__() descriptor is basically identical to
function.__get__() and binds the first argument of the cls to the
descriptor instance.

	
static bind_early(instance)

	Bind all BoundClass attributes of the instance’s class
to the instance itself to increase performance.

	
class simpy.core.EmptySchedule

	Thrown by an Environment if there are no further events to be
processed.

	
simpy.core.Infinity = inf

	Convenience alias for infinity

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy.events — Core event types

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy.events — Core event types

This module contains the basic event types used in SimPy.

The base class for all events is Event. Though it can be directly
used, there are several specialized subclasses of it.

	Event(env)
	An event that may happen at some point in time.

	Timeout(env,delay[,value])
	A Event that gets triggered after a delay has passed.

	Process(env,generator)
	Process an event yielding generator.

	AnyOf(env,events)
	A Condition event that is triggered if any of a list of events has been successfully triggered.

	AllOf(env,events)
	A Condition event that is triggered if all of a list of events have been successfully triggered.

This module also defines the Interrupt exception.

	
simpy.events.PENDING = object()

	Unique object to identify pending values of events.

	
simpy.events.URGENT = 0

	Priority of interrupts and process initialization events.

	
simpy.events.NORMAL = 1

	Default priority used by events.

	
class simpy.events.Event(env)

	An event that may happen at some point in time.

An event

	may happen (triggered is False),

	is going to happen (triggered is True) or

	has happened (processed is True).

Every event is bound to an environment env and is initially not
triggered. Events are scheduled for processing by the environment after
they are triggered by either succeed(), fail() or
trigger(). These methods also set the ok flag and the value of
the event.

An event has a list of callbacks. A callback can be any callable.
Once an event gets processed, all callbacks will be invoked with the event
as the single argument. Callbacks can check if the event was successful by
examining ok and do further processing with the value it has produced.

Failed events are never silently ignored and will raise an exception upon
being processed. If a callback handles an exception, it must set defused
flag to True to prevent this.

This class also implements __and__() (&) and __or__() (|).
If you concatenate two events using one of these operators,
a Condition event is generated that lets you wait for both or one
of them.

	
env = None

	The Environment the event lives in.

	
callbacks = None

	List of functions that are called when the event is processed.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
class simpy.events.Timeout(env, delay, value=None)

	A Event that gets triggered after a delay has
passed.

This event is automatically triggered when it is created.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.Initialize(env, process)

	Initializes a process. Only used internally by Process.

This event is automatically triggered when it is created.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.Interruption(process, cause)

	Immediately schedules an Interrupt exception with the given
cause to be thrown into process.

This event is automatically triggered when it is created.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.Process(env, generator)

	Process an event yielding generator.

A generator (also known as a coroutine) can suspend its execution by
yielding an event. Process will take care of resuming the generator
with the value of that event once it has happened. The exception of failed
events is thrown into the generator.

Process itself is an event, too. It is triggered, once the generator
returns or raises an exception. The value of the process is the return
value of the generator or the exception, respectively.

Note

Python version prior to 3.3 do not support return statements in
generators. You can use :meth:~simpy.core.Environment.exit() as
a workaround.

Processes can be interrupted during their execution by interrupt().

	
target

	The event that the process is currently waiting for.

Returns None if the process is dead or it is currently being
interrupted.

	
is_alive

	True until the process generator exits.

	
interrupt(cause=None)

	Interupt this process optionally providing a cause.

A process cannot be interrupted if it already terminated. A process can
also not interrupt itself. Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] in these
cases.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.Condition(env, evaluate, events)

	An event that gets triggered once the condition function evaluate
returns True on the given list of events.

The value of the condition event is an instance of ConditionValue
which allows convenient access to the input events and their values. The
ConditionValue will only contain entries for those events that
occurred before the condition is processed.

If one of the events fails, the condition also fails and forwards the
exception of the failing event.

The evaluate function receives the list of target events and the number
of processed events in this list: evaluate(events, processed_count). If
it returns True, the condition is triggered. The
Condition.all_events() and Condition.any_events() functions
are used to implement and (&) and or (|) for events.

Condition events can be nested.

	
static all_events(events, count)

	An evaluation function that returns True if all events have
been triggered.

	
static any_events(events, count)

	An evaluation function that returns True if at least one of
events has been triggered.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.AllOf(env, events)

	A Condition event that is triggered if all of
a list of events have been successfully triggered. Fails immediately if
any of events failed.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.AnyOf(env, events)

	A Condition event that is triggered if any of
a list of events has been successfully triggered. Fails immediately if
any of events failed.

	
fail(exception)

	Set exception as the events value, mark it as failed and schedule
it for processing by the environment. Returns the event instance.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if exception is not an Exception [http://docs.python.org/3/library/exceptions.html#Exception].

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggered.

	
processed

	Becomes True if the event has been processed (e.g., its
callbacks have been invoked).

	
succeed(value=None)

	Set the event’s value, mark it as successful and schedule it for
processing by the environment. Returns the event instance.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this event has already been triggerd.

	
trigger(event)

	Trigger the event with the state and value of the provided event.
Return self (this event instance).

This method can be used directly as a callback function to trigger
chain reactions.

	
triggered

	Becomes True if the event has been triggered and its callbacks
are about to be invoked.

	
value

	The value of the event if it is available.

The value is available when the event has been triggered.

Raise a AttributeError [http://docs.python.org/3/library/exceptions.html#AttributeError] if the value is not yet available.

	
class simpy.events.ConditionValue

	Result of a Condition. It supports convenient
dict-like access to the triggered events and their values. The events are
ordered by their occurences in the condition.

	
class simpy.events.Interrupt

	Exception thrown into a process if it is interrupted (see
interrupt()).

cause provides the reason for the interrupt, if any.

If a process is interrupted concurrently, all interrupts will be thrown
into the process in the same order as they occurred.

	
cause

	The cause of the interrupt or None if no cause was provided.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy.resources — Shared resource primitives

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy.resources — Shared resource primitives

SimPy implements three types of resources that can be used to synchronize
processes or to model congestion points:

	resource
	

	container
	

	store
	

They are derived from the base classes defined in the
base module. These classes are also meant to support
the implementation of custom resource types.

Resources — simpy.resources.resource

Shared resources supporting priorities and preemption.

These resources can be used to limit the number of processes using them
concurrently. A process needs to request the usage right to a resource. Once
the usage right is not needed anymore it has to be released. A gas station
can be modelled as a resource with a limited amount of fuel-pumps. Vehicles
arrive at the gas station and request to use a fuel-pump. If all fuel-pumps are
in use, the vehicle needs to wait until one of the users has finished refueling
and releases its fuel-pump.

These resources can be used by a limited number of processes at a time.
Processes request these resources to become a user and have to release them
once they are done. For example, a gas station with a limited number of fuel
pumps can be modeled with a Resource. Arriving vehicles request a fuel-pump.
Once one is available they refuel. When they are done, the release the
fuel-pump and leave the gas station.

Requesting a resource is modelled as “putting a process’ token into the
resources” and releasing a resources correspondingly as “getting a process’
token out of the resource”. Thus, calling request()/release() is
equivalent to calling put()/get(). Note, that releasing a resource will
always succeed immediately, no matter if a process is actually using a resource
or not.

Besides Resource, there is a PriorityResource, where
processes can define a request priority, and a PreemptiveResource
whose resource users can be preempted by requests with a higher priority.

	
class simpy.resources.resource.Resource(env, capacity=1)

	Resource with capacity of usage slots that can be requested by
processes.

If all slots are taken, requests are enqueued. Once a usage request is
released, a pending request will be triggered.

The env parameter is the Environment instance the
resource is bound to.

	
users = None

	List of Request events for the processes that are currently
using the resource.

	
queue = None

	Queue of pending Request events. Alias of
put_queue.

	
count

	Number of users currently using the resource.

	
request

	Request a usage slot.

alias of Request

	
release

	Release a usage slot.

alias of Release

	
class simpy.resources.resource.PriorityResource(env, capacity=1)

	A Resource supporting prioritized
requests.

Pending requests in the queue are sorted in ascending
order by their priority (that means lower values are more important).

	
PutQueue

	Type of the put queue. See
put_queue for details.

alias of SortedQueue

	
GetQueue

	Type of the get queue. See
get_queue for details.

alias of list [http://docs.python.org/3/library/stdtypes.html#list]

	
request

	Request a usage slot with the given priority.

alias of PriorityRequest

	
release

	Release a usage slot.

alias of Release

	
class simpy.resources.resource.PreemptiveResource(env, capacity=1)

	A PriorityResource with preemption.

If a request is preempted, the process of that request will receive an
Interrupt with a Preempted instance as
cause.

	
class simpy.resources.resource.Preempted(by, usage_since)

	Cause of an preemption Interrupt containing
information about the preemption.

	
by = None

	The preempting simpy.events.Process.

	
usage_since = None

	The simulation time at which the preempted process started to use
the resource.

	
class simpy.resources.resource.Request(resource)

	Request usage of the resource. The event is triggered once access is
granted. Subclass of simpy.resources.base.Put.

If the maximum capacity of users has not yet been reached, the request is
triggered immediately. If the maximum capacity has been
reached, the request is triggered once an earlier usage request on the
resource is released.

The request is automatically released when the request was created within
a with [http://docs.python.org/3/reference/compound_stmts.html#with] statement.

	
class simpy.resources.resource.PriorityRequest(resource, priority=0, preempt=True)

	Request the usage of resource with a given priority. If the
resource supports preemption and preempt is True other usage
requests of the resource may be preempted (see
PreemptiveResource for details).

This event type inherits Request and adds some additional
attributes needed by PriorityResource and
PreemptiveResource

	
priority = None

	The priority of this request. A smaller number means higher
priority.

	
preempt = None

	Indicates whether the request should preempt a resource user or not
(PriorityResource ignores this flag).

	
time = None

	The time at which the request was made.

	
key = None

	Key for sorting events. Consists of the priority (lower value is
more important), the time at which the request was made (earlier
requests are more important) and finally the preemption flag (preempt
requests are more important).

	
class simpy.resources.resource.Release(resource, request)

	Releases the usage of resource granted by request. This event is
triggered immediately. Subclass of simpy.resources.base.Get.

	
request = None

	The request (Request) that is to be released.

	
class simpy.resources.resource.SortedQueue(maxlen=None)

	Queue for sorting events by their key
attribute.

	
maxlen = None

	Maximum length of the queue.

	
append(item)

	Sort item into the queue.

Raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if the queue is full.

Containers — simpy.resources.container

Resource for sharing homogeneous matter between processes, either continuous
(like water) or discrete (like apples).

A Container can be used to model the fuel tank of a gasoline station.
Tankers increase and refuelled cars decrease the amount of gas in the station’s
fuel tanks.

	
class simpy.resources.container.Container(env, capacity=inf, init=0)

	Resource containing up to capacity of matter which may either be
continuous (like water) or discrete (like apples). It supports requests to
put or get matter into/from the container.

The env parameter is the Environment instance the
container is bound to.

The capacity defines the size of the container. By default, a container
is of unlimited size. The initial amount of matter is specified by init
and defaults to 0.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if capacity <= 0, init < 0 or
init > capacity.

	
level

	The current amount of the matter in the container.

	
put

	Request to put amount of matter into the container.

alias of ContainerPut

	
get

	Request to get amount of matter out of the container.

alias of ContainerGet

	
class simpy.resources.container.ContainerPut(container, amount)

	Request to put amount of matter into the container. The request will
be triggered once there is enough space in the container available.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if amount <= 0.

	
amount = None

	The amount of matter to be put into the container.

	
class simpy.resources.container.ContainerGet(container, amount)

	Request to get amount of matter from the container. The request will
be triggered once there is enough matter available in the container.

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if amount <= 0.

	
amount = None

	The amount of matter to be taken out of the container.

Stores — simpy.resources.store

Shared resources for storing a possibly unlimited amount of objects supporting
requests for specific objects.

The Store operates in a FIFO (first-in, first-out) order. Objects are
retrieved from the store in the order they were put in. The get requests of a
FilterStore can be customized by a filter to only retrieve objects
matching a given criterion.

	
class simpy.resources.store.Store(env, capacity=inf)

	Resource with capacity slots for storing arbitrary objects. By
default, the capacity is unlimited and objects are put and retrieved from
the store in a first-in first-out order.

The env parameter is the Environment instance the
container is bound to.

	
items = None

	List of the items available in the store.

	
put

	Request to put item into the store.

alias of StorePut

	
get

	Request to get an item out of the store.

alias of StoreGet

	
class simpy.resources.store.FilterStore(env, capacity=inf)

	Resource with capacity slots for storing arbitrary objects supporting
filtered get requests. Like the Store, the capacity is unlimited
by default and objects are put and retrieved from the store in a first-in
first-out order.

Get requests can be customized with a filter function to only trigger for
items for which said filter function returns True.

Note

In contrast to Store, get requests of a FilterStore
won’t necessarily be triggered in the same order they were issued.

Example: The store is empty. Process 1 tries to get an item of type
a, Process 2 an item of type b. Another process puts one item of
type b into the store. Though Process 2 made his request after
Process 1, it will receive that new item because Process 1 doesn’t
want it.

	
put

	Request a to put item into the store.

alias of StorePut

	
get

	Request a to get an item, for which filter returns True, out of
the store.

alias of FilterStoreGet

	
class simpy.resources.store.StorePut(store, item)

	Request to put item into the store. The request is triggered once
there is space for the item in the store.

	
item = None

	The item to put into the store.

	
class simpy.resources.store.StoreGet(resource)

	Request to get an item from the store. The request is triggered
once there is an item available in the store.

	
class simpy.resources.store.FilterStoreGet(resource, filter=<function <lambda> at 0x7f603eb671b8>)

	Request to get an item from the store matching the filter. The
request is triggered once there is such an item available in the store.

filter is a function receiving one item. It should return True for
items matching the filter criterion. The default function returns True
for all items, which makes the request to behave exactly like
StoreGet.

	
filter = None

	The filter function to filter items in the store.

Base classes — simpy.resources.base

Base classes of for Simpy’s shared resource types.

BaseResource defines the abstract base resource. It supports get and
put requests, which return Put and Get events respectively.
These events are triggered once the request has been completed.

	
class simpy.resources.base.BaseResource(env, capacity)

	Abstract base class for a shared resource.

You can put() something into the resources or get()
something out of it. Both methods return an event that is triggered once
the operation is completed. If a put() request cannot complete
immediately (for example if the resource has reached a capacity limit) it
is enqueued in the put_queue for later processing. Likewise for
get() requests.

Subclasses can customize the resource by:

	providing different PutQueue and GetQueue types,

	providing Put respectively Get events,

	and implementing the request processing behaviour through the methods
_do_get() and _do_put().

	
PutQueue

	The type to be used for the put_queue. It is a plain
list [http://docs.python.org/3/library/stdtypes.html#list] by default. The type must support iteration and provide
append() and remove() operations.

alias of list [http://docs.python.org/3/library/stdtypes.html#list]

	
GetQueue

	The type to be used for the get_queue. It is a plain
list [http://docs.python.org/3/library/stdtypes.html#list] by default. The type must support iteration and provide
append() and remove() operations.

alias of list [http://docs.python.org/3/library/stdtypes.html#list]

	
put_queue = None

	Queue of pending put requests.

	
get_queue = None

	Queue of pending get requests.

	
capacity

	Maximum capacity of the resource.

	
put

	Request to put something into the resource and return a Put
event, which gets triggered once the request succeeds.

alias of Put

	
get

	Request to get something from the resource and return a Get
event, which gets triggered once the request succeeds.

alias of Get

	
class simpy.resources.base.Put(resource)

	Generic event for requesting to put something into the resource.

This event (and all of its subclasses) can act as context manager and can
be used with the with [http://docs.python.org/3/reference/compound_stmts.html#with] statement to automatically cancel the
request if an exception (like an simpy.events.Interrupt for
example) occurs:

with res.put(item) as request:
 yield request

	
cancel()

	Cancel this put request.

This method has to be called if the put request must be aborted, for
example if a process needs to handle an exception like an
Interrupt.

If the put request was created in a with [http://docs.python.org/3/reference/compound_stmts.html#with] statement, this
method is called automatically.

	
class simpy.resources.base.Get(resource)

	Generic event for requesting to get something from the resource.

This event (and all of its subclasses) can act as context manager and can
be used with the with [http://docs.python.org/3/reference/compound_stmts.html#with] statement to automatically cancel the
request if an exception (like an simpy.events.Interrupt for
example) occurs:

with res.put(item) as request:
 yield request

	
cancel()

	Cancel this get request.

This method has to be called if the get request must be aborted, for
example if a process needs to handle an exception like an
Interrupt.

If the get request was created in a with [http://docs.python.org/3/reference/compound_stmts.html#with] statement, this
method is called automatically.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy.rt — Real-time simulation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy.rt — Real-time simulation

Execution environment for events that synchronizes passing of time
with the real-time (aka wall-clock time).

	
class simpy.rt.RealtimeEnvironment(initial_time=0, factor=1.0, strict=True)

	Execution environment for an event-based simulation which is
synchronized with the real-time (also known as wall-clock time). A time
step will take factor seconds of real time (one second by default).
A step from 0 to 3 with a factor=0.5 will, for example, take at
least
1.5 seconds.

The step() method will raise a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if a time step
took too long to compute. This behaviour can be disabled by setting
strict to False.

	
factor = None

	Scaling factor of the real-time.

	
strict = None

	Running mode of the environment. step() will raise a
RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] if this is set to True and the processing of
events takes too long.

	
active_process

	The currently active process of the environment.

	
all_of

	alias of AllOf

	
any_of

	alias of AnyOf

	
event

	alias of Event

	
exit(value=None)

	Stop the current process, optionally providing a value.

This is a convenience function provided for Python versions prior to
3.3. From Python 3.3, you can instead use return value in
a process.

	
now

	The current simulation time.

	
peek()

	Get the time of the next scheduled event. Return
Infinity if there is no further event.

	
process

	alias of Process

	
run(until=None)

	Executes step() until the given criterion until is met.

	If it is None (which is the default), this method will return
when there are no further events to be processed.

	If it is an Event, the method will continue
stepping until this event has been triggered and will return its
value.

	If it is a number, the method will continue stepping
until the environment’s time reaches until.

	
schedule(event, priority=1, delay=0)

	Schedule an event with a given priority and a delay.

	
sync()

	Synchronize the internal time with the current wall-clock time.

This can be useful to prevent step() from raising an error if
a lot of time passes between creating the RealtimeEnvironment and
calling run() or step().

	
timeout

	alias of Timeout

	
step()

	Process the next event after enough real-time has passed for the
event to happen.

The delay is scaled according to the real-time factor. With
strict mode enabled, a RuntimeError [http://docs.python.org/3/library/exceptions.html#RuntimeError] will be raised, if
the event is processed too slowly.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 simpy.util — Utility functions for SimPy

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	API Reference

simpy.util — Utility functions for SimPy

A collection of utility functions:

	start_delayed(env,generator,delay)
	Return a helper process that starts another process for generator after a certain delay.

	test()
	Runs SimPy’s test suite via py.test [http://pytest.org/latest/].

	
simpy.util.start_delayed(env, generator, delay)

	Return a helper process that starts another process for generator
after a certain delay.

process() starts a process at the current
simulation time. This helper allows you to start a process after a delay of
delay simulation time units:

>>> from simpy import Environment
>>> from simpy.util import start_delayed
>>> def my_process(env, x):
... print('%s, %s' % (env.now, x))
... yield env.timeout(1)
...
>>> env = Environment()
>>> proc = start_delayed(env, my_process(env, 3), 5)
>>> env.run()
5, 3

Raise a ValueError [http://docs.python.org/3/library/exceptions.html#ValueError] if delay <= 0.

	
simpy.util.test()

	Runs SimPy’s test suite via py.test [http://pytest.org/latest/].

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 About SimPy

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

About SimPy

This sections is all about the non-technical stuff. How did SimPy evolve? Who
was responsible for it? And what the heck were they tinking when they made it?

	SimPy History & Change Log

	Acknowledgments

	Ports

	Defense of Design

	Release Process

	License

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 SimPy History & Change Log

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

SimPy History & Change Log

SimPy was originally based on ideas from Simula and Simscript but uses standard
Python. It combines two previous packages, SiPy, in Simula-Style (Klaus Müller)
and SimPy, in Simscript style (Tony Vignaux and Chang Chui).

SimPy was based on efficient implementation of co-routines using Python’s
generators capability.

SimPy 3 introduced a completely new and easier-to-use API, but still relied on
Python’s generators as they proved to work very well.

The package has been hosted on Sourceforge.net since September 15th, 2002.
In June 2012, the project moved to Bitbucket.org.

3.0.6 - 2015-01-30

	[NEW] Guide to SimPy resources.

	[CHANGE] Improve performance of condition events.

	[CHANGE] Improve performance of filter store (thanks to Christoph Körner).

	[CHANGE] Exception tracebacks are now more compact.

	[FIX] AllOf conditions handle already processed events correctly (issue
#52 [https://bitbucket.org/simpy/simpy/issue/52]).

	[FIX] Add sync() to RealtimeEnvironment to reset its internal
wall-clock reference time (issue #42 [https://bitbucket.org/simpy/simpy/issue/42]).

	[FIX] Only send copies of exceptions into processes to prevent traceback
modifications.

	[FIX] Documentation improvements.

3.0.5 – 2014-05-14

	[CHANGE] Move interruption and all of the safety checks into a new event
(pull request #30 [https://bitbucket.org/simpy/simpy/pull-request/30])

	[FIX] FilterStore.get() now behaves correctly (issue #49 [https://bitbucket.org/simpy/simpy/issue/49]).

	[FIX]Documentation improvements.

3.0.4 – 2014-04-07

	[NEW] Verified, that SimPy works on Python 3.4.

	[NEW] Guide to SimPy events

	[CHANGE]The result dictionary for condition events (AllOF / & and
AnyOf / |) now is an OrderedDict sorted in the same way as the
original events list.

	[CHANGE] Condition events now also except processed events.

	[FIX] Resource.request() directly after Resource.release() no longer
successful. The process now has to wait as supposed to.

	[FIX]Event.fail() now accept all exceptions derived from
BaseException instead of only Exception.

3.0.3 – 2014-03-06

	[NEW]Guide to SimPy basics.

	[NEW] Guide to SimPy Environments.

	[FIX] Timing problems with real time simulation on Windows (issue #46).

	[FIX] Installation problems on Windows due to Unicode errors (issue #41).

	[FIX] Minor documentation issues.

3.0.2 – 2013-10-24

	[FIX]The default capacity for Container and FilterStore is now also
inf.

3.0.1 – 2013-10-24

	[FIX]Documentation and default parameters of Store didn’t match. Its
default capacity is now inf.

3.0 – 2013-10-11

SimPy 3 has been completely rewritten from scratch. Our main goals were to
simplify the API and code base as well as making SimPy more flexible and
extensible. Some of the most important changes are:

	Stronger focus on events. Processes yield event instances and are suspended
until the event is triggered. An example for an event is a timeout
(formerly known as hold), but even processes are now events, too (you can
wait until a process terminates).

	Events can be combined with & (and) and | (or) to create
condition events.

	Process can now be defined by any generator function. You don’t have to
subclass Process anymore.

	No more global simulation state. Every simulation stores its state in an
environment which is comparable to the old Simulation class.

	Improved resource system with newly added resource types.

	Removed plotting and GUI capabilities. Pyside [http://qt-project.org/wiki/PySide] and matplotlib [http://matplotlib.org/] are much
better with this.

	Greatly improved test suite. Its cleaner, and the tests are shorter and more
numerous.

	Completely overhauled documentation.

There is a guide for porting from SimPy 2 to SimPy 3 [https://simpy.readthedocs.org/en/latest/topical_guides/porting_from_simpy2.html]. If you want to stick
to SimPy 2 for a while, change your requirements to 'SimPy>=2.3,<3'.

All in all, SimPy has become a framework for asynchronous programming based on
coroutines. It brings more than ten years of experience and scientific know-how
in the field of event-discrete simulation to the world of asynchronous
programming and should thus be a solid foundation for everything based on an
event loop.

You can find information about older versions on the history page [https://simpy.readthedocs.org/en/latest/about/history.html]

2.3.1 – 2012-01-28

	[NEW] More improvements on the documentation.

	[FIX] Syntax error in tkconsole.py when installing on Py3.2.

	[FIX] Added mock to the dep. list in SimPy.test().

2.3 – 2011-12-24

	[NEW] Support for Python 3.2. Support for Python <= 2.5 has been dropped.

	[NEW] SimPy.test() method to run the tests on the installed version of SimPy.

	[NEW] Tutorials/examples were integrated into the test suite.

	[CHANGE] Even more code clean-up (e.g., removed prints throughout the code,
removed if-main-blocks, ...).

	[CHANGE] Many documentation improvements.

2.2 – 2011-09-27

	[CHANGE] Restructured package layout to be conform to the Hitchhiker’s Guide
to packaging [http://guide.python-distribute.org/]

	[CHANGE] Tests have been ported to pytest.

	[CHANGE] Documentation improvements and clean-ups.

	[FIX] Fixed incorrect behavior of Store._put, thanks to Johannes Koomer for
the fix.

2.1 – 2010-06-03

	[NEW] A function step has been added to the API. When called, it executes
the next scheduled event. (step is actually a method of Simulation.)

	[NEW] Another new function is peek. It returns the time of the next event.
By using peek and step together, one can easily write e.g. an interactive
program to step through a simulation event by event.

	[NEW] A simple interactive debugger stepping.py has been added. It allows
stepping through a simulation, with options to skip to a certain time, skip
to the next event of a given process, or viewing the event list.

	[NEW] Versions of the Bank tutorials (documents and programs) using the
advanced- [NEW] object-oriented API have been added.

	[NEW] A new document describes tools for gaining insight into and debugging
SimPy models.

	[CHANGE] Major re-structuring of SimPy code, resulting in much less SimPy
code – great for the maintainers.

	[CHANGE] Checks have been added which test whether entities belong to the
same Simulation instance.

	[CHANGE] The Monitor and Tally methods timeAverage and timeVariance now
calculate only with the observed time-series. No value is assumed for the
period prior to the first observation.

	[CHANGE] Changed class Lister so that circular references between objects no
longer lead to stack overflow and crash.

	[FIX] Functions allEventNotices and allEventTimes are working again.

	[FIX] Error messages for methods in SimPy.Lib work again.

2.0.1 – 2009-04-06

	[NEW] Tests for real time behavior (testRT_Behavior.py and
testRT_Behavior_OO.py in folder SimPy).

	[FIX] Repaired a number of coding errors in several models in the SimPyModels
folder.

	[FIX] Repaired SimulationRT.py bug introduced by recoding for the OO API.

	[FIX] Repaired errors in sample programs in documents:
	Simulation with SimPy - In Depth Manual

	SimPy’s Object Oriented API Manual

	Simulation With Real Time Synchronization Manual

	SimPlot Manual

	Publication-quality Plot Production With Matplotlib Manual

2.0.0 –2009-01-26

This is a major release with changes to the SimPy application programming
interface (API) and the formatting of the documentation.

API changes

In addition to its existing API, SimPy now also has an object oriented API.
The additional API

	allows running SimPy in parallel on multiple processors or multi-core CPUs,

	supports better structuring of SimPy programs,

	allows subclassing of class Simulation and thus provides users with
the capability of creating new simulation modes/libraries like SimulationTrace, and

	reduces the total amount of SimPy code, thereby making it easier to maintain.

Note that the OO API is in addition to the old API. SimPy 2.0 is fully
backward compatible.

Documentation format changes

SimPy’s documentation has been restructured and processed by the Sphinx
documentation generation tool. This has generated one coherent, well
structured document which can be easily browsed. A seach capability is included.

March 2008: Version 1.9.1

This is a bug-fix release which cures the following bugs:

	Excessive production of circular garbage, due to a circular reference
between Process instances and event notices. This led to large memory
requirements.

	Runtime error for preempts of proceeses holding multiple Resource objects.

It also adds a Short Manual, describing only the basic facilities of SimPy.

December 2007: Version 1.9

This is a major release with added functionality/new user API calls and bug fixes.

Major changes

	The event list handling has been changed to improve the runtime performance
of large SimPy models (models with thousands of processes). The use of
dictionaries for timestamps has been stopped. Thanks are due to Prof.
Norm Matloff and a team of his students who did a study on improving
SimPy performance. This was one of their recommendations. Thanks, Norm and guys!
Furthermore, in version 1.9 the ‘heapq’ sorting package replaces ‘bisect’.
Finally, cancelling events no longer removes them, but rather marks them.
When their event time comes, they are ignored. This was Tony Vignaux’ idea!

	The Manual has been edited and given an easier-to-read layout.

	The Bank2 tutorial has been extended by models which use more advanced
SimPy commands/constructs.

Bug fixes

	The tracing of ‘activate’ statements has been enabled.

Additions

	A method returning the time-weighted variance of observations
has been added to classes Monitor and Tally.

	A shortcut activation method called “start” has been added
to class Process.

January 2007: Version 1.8

Major Changes

	SimPy 1.8 and future releases will not run under the obsolete
Python 2.2 version. They require Python 2.3 or later.

	The Manual has been thoroughly edited, restructured and rewritten.
It is now also provided in PDF format.

	The Cheatsheet has been totally rewritten in a tabular format.
It is provided in both XLS (MS Excel spreadsheet) and PDF format.

	The version of SimPy.Simulation(RT/Trace/Step) is now accessible
by the variable ‘version’.

	The __str__ method of Histogram was changed to return a table format.

Bug fixes

	Repaired a bug in yield waituntil runtime code.

	Introduced check for capacity parameter of a Level or a Store
being a number > 0.

	Added code so that self.eventsFired gets set correctly after an event fires
in a compound yield get/put with a waitevent clause (reneging case).

	Repaired a bug in prettyprinting of Store objects.

Additions

	New compound yield statements support time-out or event-based
reneging in get and put operations on Store and Level instances.

	yield get on a Store instance can now have a filter function.

	All Monitor and Tally instances are automatically registered in list
allMonitors and allTallies, respectively.

	The new function startCollection allows activation of Monitors and
Tallies at a specified time.

	A printHistogram method was added to Tally and Monitor which generates
a table-form histogram.

	In SimPy.SimulationRT: A function for allowing changing
the ratio wall clock time to simulation time has been added.

June 2006: Version 1.7.1

This is a maintenance release. The API has not been changed/added to.

	Repair of a bug in the _get methods of Store and Level which could lead to synchronization problems
(blocking of producer processes, despite space being available in the buffer).

	Repair of Level __init__ method to allow initialBuffered to be of either float or int type.

	Addition of type test for Level get parameter ‘nrToGet’ to limit it to positive
int or float.

	To improve pretty-printed output of ‘Level’ objects, changed attribute
‘_nrBuffered’ to ‘nrBuffered’ (synonym for ‘amount’ property).

	To improve pretty-printed output of ‘Store’ objects, added attribute
‘buffered’ (which refers to ‘_theBuffer’ attribute).

February 2006: Version 1.7

This is a major release.

	Addition of an abstract class Buffer, with two sub-classes Store and Level
Buffers are used for modelling inter-process synchronization in producer/
consumer and multi-process cooperation scenarios.

	Addition of two new yield statements:
	yield put for putting items into a buffer, and

	yield get for getting items from a buffer.

	The Manual has undergone a major re-write/edit.

	All scripts have been restructured for compatibility with IronPython 1 beta2.
This was doen by moving all import statements to the beginning of the scripts.
After the removal of the first (shebang) line, all scripts (with the exception
of plotting and GUI scripts) can run successfully under this new Python
implementation.

September 2005: Version 1.6.1

This is a minor release.

	Addition of Tally data collection class as alternative
to Monitor. It is intended for collecting very large data sets
more efficiently in storage space and time than Monitor.

	Change of Resource to work with Tally (new Resource
API is backwards-compatible with 1.6).

	Addition of function setHistogram to class Monitor for initializing
histograms.

	New function allEventNotices() for debugging/teaching purposes. It returns
a prettyprinted string with event times and names of process instances.

	Addition of function allEventTimes (returns event times of all scheduled
events).

15 June 2005: Version 1.6

	Addition of two compound yield statement forms to support the modelling of
processes reneging from resource queues.

	Addition of two test/demo files showing the use of the new reneging statements.

	Addition of test for prior simulation initialization in method activate().

	Repair of bug in monitoring thw waitQ of a resource when preemption occurs.

	Major restructuring/editing to Manual and Cheatsheet.

1 February 2005: Version 1.5.1

	MAJOR LICENSE CHANGE:

Starting with this version 1.5.1, SimPy is being release under the GNU
Lesser General Public License (LGPL), instead of the GNU GPL. This change
has been made to encourage commercial firms to use SimPy in for-profit
work.

	Minor re-release

	No additional/changed functionality

	Includes unit test file’MonitorTest.py’ which had been accidentally deleted
from 1.5

	Provides updated version of ‘Bank.html’ tutorial.

	Provides an additional tutorial (‘Bank2.html’) which shows
how to use the new synchronization constructs introduced in SimPy 1.5.

	More logical, cleaner version numbering in files.

1 December 2004: Version 1.5

	No new functionality/API changes relative to 1.5 alpha

	Repaired bug related to waiting/queuing for multiple events

	SimulationRT: Improved synchronization with wallclock time on Unix/Linux

25 September 2004: Version 1.5alpha

	New functionality/API additions

	SimEvents and signalling synchronization constructs, with ‘yield waitevent’ and ‘yield queueevent’ commands.

	A general “wait until” synchronization construct, with the ‘yield waituntil’ command.

	No changes to 1.4.x API, i.e., existing code will work as before.

19 May 2004: Version 1.4.2

	Sub-release to repair two bugs:

	The unittest for monitored Resource queues does not fail anymore.

	SimulationTrace now works correctly with “yield hold,self” form.

	No functional or API changes

29 February 2004: Version 1.4.1

	Sub-release to repair two bugs:

	The (optional) monitoring of the activeQ in Resource now works correctly.

	The “cellphone.py” example is now implemented correctly.

	No functional or API changes

1 February 2004: Version 1.4

	Released on SourceForge.net

22 December 2003: Version 1.4 alpha

	New functionality/API changes

	All classes in the SimPy API are now new style classes, i.e., they inherit from object either directly or indirectly.

	Module Monitor.py has been merged into module Simulation.py and all SimulationXXX.py modules. Import of Simulation or any SimulationXXX module now also imports Monitor.

	Some Monitor methods/attributes have changed. See Manual!

	Monitor now inherits from list.

	A class Histogram has been added to Simulation.py and all SimulationXXX.py modules.

	A module SimulationRT has been added which allows synchronization between simulated and wallclock time.

	A moduleSimulationStep which allows the execution of a simulation model event-by-event, with the facility to execute application code after each event.

	A Tk/Tkinter-based module SimGUI has been added which provides a SimPy GUI framework.

	A Tk/Tkinter-based module SimPlot has been added which provides for plot output from SimPy programs.

22 June 2003: Version 1.3

	No functional or API changes

	Reduction of sourcecode linelength in Simulation.py to <= 80 characters

June 2003: Version 1.3 alpha

	Significantly improved performance

	Significant increase in number of quasi-parallel processes SimPy can handle

	New functionality/API changes:

	Addition of SimulationTrace, an event trace utility

	Addition of Lister, a prettyprinter for instance attributes

	No API changes

	Internal changes:

	Implementation of a proposal by Simon Frost: storing the keys of the event set dictionary in a binary search tree using bisect. Thank you, Simon! SimPy 1.3 is dedicated to you!

	Update of Manual to address tracing.

	Update of Interfacing doc to address output visualization using Scientific Python gplt package.

29 April 2003: Version 1.2

	No changes in API.

	
	Internal changes:

	
	Defined “True” and “False” in Simulation.py to support Python 2.2.

22 October 2002

	Re-release of 0.5 Beta on SourceForge.net to replace corrupted file __init__.py.

	No code changes whatever!

18 October 2002

	Version 0.5 Beta-release, intended to get testing by application developers and system integrators in preparation of first full (production) release. Released on SourceForge.net on 20 October 2002.

	More models

	Documentation enhanced by a manual, a tutorial (“The Bank”) and installation instructions.

	Major changes to the API:

	Introduced ‘simulate(until=0)’ instead of ‘scheduler(till=0)’. Left ‘scheduler()’ in for backward compatibility, but marked as deprecated.

	Added attribute “name” to class Process. Process constructor is now:

def __init__(self,name="a_process")

Backward compatible if keyword parameters used.

	Changed Resource constructor to:

def __init__(self,capacity=1,name="a_resource",unitName="units")

Backward compatible if keyword parameters used.

27 September 2002

	Version 0.2 Alpha-release, intended to attract feedback from users

	Extended list of models

	Upodated documentation

17 September 2002

	Version 0.1.2 published on SourceForge; fully working, pre-alpha code

	Implements simulation, shared resources with queuing (FIFO), and monitors
for data gathering/analysis.

	Contains basic documentation (cheatsheet) and simulation models for test and
demonstration.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Acknowledgments

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

Acknowledgments

SimPy 2 has been primarily developed by Stefan Scherfke and Ontje Lünsdorf,
starting from SimPy 1.9. Their work has resulted in a most elegant combination
of an object oriented API with the existing API, maintaining full backward
compatibility. It has been quite easy to integrate their product into the
existing SimPy code and documentation environment.

Thanks, guys, for this great job! SimPy 2.0 is dedicated to you!

SimPy was originally created by Klaus Müller and Tony Vignaux. They pushed its
development for several years and built the Simpy community. Without them,
there would be no SimPy 3.

Thanks, guys, for this great job! SimPy 3.0 is dedicated to you!

The many contributions of the SimPy user and developer communities are of
course also gratefully acknowledged.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Ports

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

Ports

An almost feature-complete reimplementation of SimPy in C# was written by
Andreas Beham and is available at github.com/abeham/SimSharp [http://github.com/abeham/SimSharp]

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Defense of Design

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

Defense of Design

This document explains why SimPy is designed the way it is and how its design
evolved over time.

Original Design of SimPy 1

SimPy 1 was heavily inspired by Simula 67 and Simscript. The basic entity
of the framework was a process. A process described a temporal sequence of
actions.

In SimPy 1, you implemented a process by sub-classing Process. The instance
of such a subclass carried both, process and simulation internal information,
whereat the latter wasn’t of any use to the process itself. The sequence of
actions of the process was specified in a method of the subclass, called the
process execution method (or PEM in short). A PEM interacted with the
simulation by yielding one of several keywords defined in the simulation
package.

The simulation itself was executed via module level functions. The simulation
state was stored in the global scope. This made it very easy to implement and
execute a simulation (despite from heaving to inherit from Process and
instantianting the processes before starting their PEMs). However, having all
simulation state global makes it hard to parallelize multiple simulations.

SimPy 1 also followed the “batteries included” approach, providing shared
resources, monitoring, plotting, GUIs and multiple types of simulations
(“normal”, real-time, manual stepping, with tracing).

The following code fragment shows how a simple simulation could be implemented
in SimPy 1:

from SimPy.Simulation import Process, hold, initialize, activate, simulate

class MyProcess(Process):
 def pem(self, repeat):
 for i in range(repeat):
 yield hold, self, 1

initialize()
proc = MyProcess()
activate(proc, proc.pem(3))
simulate(until=10)

sim = Simulation()
proc = MyProcess(sim=sim)
sim.activate(proc, proc.pem(3))
sim.simulate(until=10)

Changes in SimPy 2

Simpy 2 mostly sticked with Simpy 1’s design, but added an object orient API
for the execution of simulations, allowing them to be executed in parallel.
Since processes and the simulation state were so closely coupled, you now
needed to pass the Simulation instance into your process to “bind” them to
that instance. Additionally, you still had to activate the process. If you
forgot to pass the simulation instance, the process would use a global instance
thereby breaking your program. SimPy 2’s OO-API looked like this:

from SimPy.Simulation import Simulation, Process, hold

class MyProcess(Process):
 def pem(self, repeat):
 for i in range(repeat):
 yield hold, self, 1

sim = Simulation()
proc = MyProcess(sim=sim)
sim.activate(proc, proc.pem(3))
sim.simulate(until=10)

Changes and Decisions in SimPy 3

The original goals for SimPy 3 were to simplify and PEP8-ify its API and to
clean up and modularize its internals. We knew from the beginning that our
goals would not be achievable without breaking backwards compatibility with
SimPy 2. However, we didn’t expect the API changes to become as extensive as
they ended up to be.

We also removed some of the included batteries, namely SimPy’s plotting and GUI
capabilities, since dedicated libraries like matplotlib [http://matplotlib.org/] or PySide [http://qt-project.org/wiki/PySide] do
a much better job here.

However, by far the most changes are—from the end user’s view—mostly
syntactical. Thus, porting from 2 to 3 usually just means replacing a line of
SimPy 2 code with its SimPy3 equivalent (e.g., replacing yield hold, self,
1 with yield env.timeout(1)).

In short, the most notable changes in SimPy 3 are:

	No more sub-classing of Process required. PEMs can even be simple module
level functions.

	The simulation state is now stored in an Environment which can also be
used by a PEM to interact with the simulation.

	PEMs now yield event objects. This implicates interesting new features and
allows an easy extension with new event types.

These changes are causing the above example to now look like this:

from simpy import Environment, simulate

def pem(env, repeat):
 for i in range(repeat):
 yield env.timeout(i)

env = Environment()
env.process(pem(env, 7))
simulate(env, until=10)

The following sections describe these changes in detail:

No More Sub-classing of Process

In Simpy 3, every Python generator can be used as a PEM, no matter if it is
a module level function or a method of an object. This reduces the amount of
code required for simple processes. The Process class still exists, but you
don’t need to instantiate it by yourself, though. More on that later.

Processes Live in an Environment

Process and simulation state are decoupled. An Environment holds the
simulation state and serves as base API for processes to create new events.
This allows you to implement advanced use cases by extending the Process or
Environment class without affecting other components.

For the same reason, the simulate() method now is a module level function
that takes an environment to simulate.

Stronger Focus on Events

In former versions, PEMs needed to yield one of SimPy’s built-in keywords (like
hold) to interact with the simulation. These keywords had to be imported
separately and were bound to some internal functions that were tightly
integrated with the Simulation and Process making it very hard to
extend SimPy with new functionality.

In Simpy 3, PEMs just need to yield events. There are various built-in event
types, but you can also create custom ones by making a subclass of
a BaseEvent. Most events are generated by factory methods of
Environment. For example, Environment.timeout() creates a Timeout
event that replaces the hold keyword.

The Process is now also an event. You can now yield another process and
wait for it to finish. For example, think of a car-wash simulation were
“washing” is a process that the car processes can wait for once they enter the
washing station.

Creating Events via the Environment or Resources

The Environment and resources have methods to create new events, e.g.
Environment.timeout() or Resource.request(). Each of these methods maps
to a certain event type. It creates a new instance of it and returns it, e.g.:

def event(self):
 return Event()

To simplify things, we wanted to use the event classes directly as methods:

class Environment(object)
 event = Event

This was, unfortunately, not directly possible and we had to wrap the classes
to behave like bound methods. Therefore, we introduced a BoundClass:

class BoundClass(object):
 """Allows classes to behave like methods. The ``__get__()`` descriptor
 is basically identical to ``function.__get__()`` and binds the first
 argument of the ``cls`` to the descriptor instance.

 """
 def __init__(self, cls):
 self.cls = cls

 def __get__(self, obj, type=None):
 if obj is None:
 return self.cls
 return types.MethodType(self.cls, obj)

class Environment(object):
 event = BoundClass(Event)

These methods are called a lot, so we added the event classes as
types.MethodType [http://docs.python.org/3/library/types.html#types.MethodType] to the instance of Environment (or the resources,
respectively):

class Environment(object):
 def __init__(self):
 self.event = types.MethodType(Event, self)

It turned out the the class attributes (the BoundClass instances) were now
quite useless, so we removed them allthough it was actually the “right” way to
to add classes as methods to another class.

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Release Process

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

Release Process

This process describes the steps to execute in order to release a new version
of SimPy.

Preparations

	Close all tickets for the next version [https://bitbucket.org/simpy/simpy/issues?status=new&status=open].

	Update the minium required versions of dependencies in setup.py.
Update the exact version of all entries in requirements.txt.

	Run tox from the project root. All tests for all supported
versions must pass:

$ tox
[...]
________ summary ________
py27: commands succeeded
py32: commands succeeded
py33: commands succeeded
pypy: commands succeeded
congratulations :)

Note

Tox will use the requirements.txt to setup the venvs, so make sure
you’ve updated it!

	Build the docs (HTML is enough). Make sure there are no errors and undefined
references.

$ cd docs/
$ make clean html
$ cd ..

	Check if all authors are listed in AUTHORS.txt.

	Update the change logs (CHANGES.txt and
docs/about/history.rst). Only keep changes for the current major
release in CHANGES.txt and reference the history page from there.

	Commit all changes:

$ hg ci -m 'Updated change log for the upcoming release.'

	Update the version number in simpy/__init__.py and commit:

$ hg ci -m 'Bump version from x.y.z to a.b.c'

Warning

Do not yet tag and push the changes so that you can safely do a rollback
if one of the next step fails and you need change something!

	Write a draft for the announcement mail with a list of changes,
acknowledgements and installation instructions. Everyone in the team should
agree with it.

Build and release

	Test the release process. Build a source distribution and a wheel [https://pypi.python.org/pypi/wheel] package and test them:

$ python setup.py sdist bdist_wheel
$ ls dist/
simpy-a.b.c-py2.py3-none-any.whl simpy-a.b.c.tar.gz

Try installing them:

$ rm -rf /tmp/simpy-sdist # ensure clean state if ran repeatedly
$ virtualenv /tmp/simpy-sdist
$ /tmp/simpy-sdist/bin/pip install pytest
$ /tmp/simpy-sdist/bin/pip install dist/simpy-a.b.c.tar.gz
$ /tmp/simpy-sdist/bin/python
>>> import simpy # doctest: +SKIP
>>> simpy.__version__ # doctest: +SKIP
'a.b.c'
>>> simpy.test() # doctest: +SKIP

and

$ rm -rf /tmp/simpy-wheel # ensure clean state if ran repeatedly
$ virtualenv /tmp/simpy-wheel
$ /tmp/simpy-wheel/bin/pip install pytest
$ /tmp/simpy-wheel/bin/pip install dist/simpy-a.b.c-py2.py3-none-any.whl
$ /tmp/simpy-wheel/bin/python
>>> import simpy # doctest: +SKIP
>>> simpy.__version__ # doctest: +SKIP
'a.b.c'
>>> simpy.test() # doctest: +SKIP

	Create or check your accounts for the test server
<https://testpypi.python.org/pypi> and PyPI [https://pypi.python.org/pypi]. Update your ~/.pypirc with your
current credentials:

[distutils]
index-servers =
 pypi
 test

[test]
repository = https://testpypi.python.org/pypi
username = <your test user name goes here>
password = <your test password goes here>

[pypi]
repository = http://pypi.python.org/pypi
username = <your production user name goes here>
password = <your production password goes here>

	Upload the distributions for the new version to the test server and test the
installation again:

$ twine upload -r test dist/simpy*a.b.c*
$ pip install -i https://testpypi.python.org/pypi simpy

	Check if the package is displayed correctly:
https://testpypi.python.org/pypi/simpy

	Finally upload the package to PyPI and test its installation one last time:

$ twine upload -r pypi dist/simpy*a.b.c*
$ pip install -U simpy

	Check if the package is displayed correctly:
https://pypi.python.org/pypi/simpy

Post release

	Push your changes:

$ hg tag a.b.c
$ hg push ssh://hg@bitbucket.org/simpy/simpy

	Activate the documentation build [https://readthedocs.org/dashboard/simpy/versions/] for the new version.

	Send the prepared email to the mailing list and post it on Google+.

	Update Wikipedia [http://en.wikipedia.org/wiki/SimPy] entries.

	Update Python Wiki [https://wiki.python.org/moin/UsefulModules#Scientific]

	Post something to Planet Python (e.g., via Stefan’s blog).

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 License

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SimPy 3.0.6 documentation

 	About SimPy

License

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	SimPy 3.0.6 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 simpy	

 	
 	
 simpy.core	

 	
 	
 simpy.events	

 	
 	
 simpy.resources	

 	
 	
 simpy.resources.base	

 	
 	
 simpy.resources.container	

 	
 	
 simpy.resources.resource	

 	
 	
 simpy.resources.store	

 	
 	
 simpy.rt	

 	
 	
 simpy.util	

 Copyright 2002–2015, Team SimPy.
 Created using Sphinx 1.2.3.

 Index

 Navigation

 	
 index

 	
 modules |

 	SimPy 3.0.6 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	

 	active_process (simpy.core.BaseEnvironment attribute)

 	

 	(simpy.core.Environment attribute)

 	(simpy.rt.RealtimeEnvironment attribute)

 	all_events() (simpy.events.Condition static method)

 	all_of (simpy.rt.RealtimeEnvironment attribute)

 	all_of() (simpy.core.Environment method)

 	AllOf (class in simpy.events)

 	amount (simpy.resources.container.ContainerGet attribute)

 	

 	(simpy.resources.container.ContainerPut attribute)

 	

 	any_events() (simpy.events.Condition static method)

 	any_of (simpy.rt.RealtimeEnvironment attribute)

 	any_of() (simpy.core.Environment method)

 	AnyOf (class in simpy.events)

 	append() (simpy.resources.resource.SortedQueue method)

B

 	

 	BaseEnvironment (class in simpy.core)

 	BaseResource (class in simpy.resources.base)

 	bind_early() (simpy.core.BoundClass static method)

 	

 	BoundClass (class in simpy.core)

 	by (simpy.resources.resource.Preempted attribute)

C

 	

 	callbacks (simpy.events.Event attribute)

 	cancel() (simpy.resources.base.Get method)

 	

 	(simpy.resources.base.Put method)

 	capacity (simpy.resources.base.BaseResource attribute)

 	cause (simpy.events.Interrupt attribute)

 	Condition (class in simpy.events)

 	

 	ConditionValue (class in simpy.events)

 	Container (class in simpy.resources.container)

 	ContainerGet (class in simpy.resources.container)

 	ContainerPut (class in simpy.resources.container)

 	count (simpy.resources.resource.Resource attribute)

E

 	

 	EmptySchedule (class in simpy.core)

 	env (simpy.events.Event attribute)

 	Environment (class in simpy.core)

 	Event (class in simpy.events)

 	

 	event (simpy.rt.RealtimeEnvironment attribute)

 	event() (simpy.core.Environment method)

 	exit() (simpy.core.BaseEnvironment method)

 	

 	(simpy.core.Environment method)

 	(simpy.rt.RealtimeEnvironment method)

F

 	

 	factor (simpy.rt.RealtimeEnvironment attribute)

 	fail() (simpy.events.AllOf method)

 	

 	(simpy.events.AnyOf method)

 	(simpy.events.Condition method)

 	(simpy.events.Event method)

 	(simpy.events.Initialize method)

 	(simpy.events.Interruption method)

 	(simpy.events.Process method)

 	(simpy.events.Timeout method)

 	filter (simpy.resources.store.FilterStoreGet attribute)

 	

 	FilterStore (class in simpy.resources.store)

 	FilterStoreGet (class in simpy.resources.store)

G

 	

 	Get (class in simpy.resources.base)

 	get (simpy.resources.base.BaseResource attribute)

 	

 	(simpy.resources.container.Container attribute)

 	(simpy.resources.store.FilterStore attribute)

 	(simpy.resources.store.Store attribute)

 	

 	get_queue (simpy.resources.base.BaseResource attribute)

 	GetQueue (simpy.resources.base.BaseResource attribute)

 	

 	(simpy.resources.resource.PriorityResource attribute)

I

 	

 	Infinity (in module simpy.core)

 	Initialize (class in simpy.events)

 	Interrupt (class in simpy.events)

 	interrupt() (simpy.events.Process method)

 	

 	Interruption (class in simpy.events)

 	is_alive (simpy.events.Process attribute)

 	item (simpy.resources.store.StorePut attribute)

 	items (simpy.resources.store.Store attribute)

K

 	

 	key (simpy.resources.resource.PriorityRequest attribute)

L

 	

 	level (simpy.resources.container.Container attribute)

M

 	

 	maxlen (simpy.resources.resource.SortedQueue attribute)

N

 	

 	NORMAL (in module simpy.events)

 	

 	now (simpy.core.BaseEnvironment attribute)

 	

 	(simpy.core.Environment attribute)

 	(simpy.rt.RealtimeEnvironment attribute)

P

 	

 	peek() (simpy.core.Environment method)

 	

 	(simpy.rt.RealtimeEnvironment method)

 	PENDING (in module simpy.events)

 	preempt (simpy.resources.resource.PriorityRequest attribute)

 	Preempted (class in simpy.resources.resource)

 	PreemptiveResource (class in simpy.resources.resource)

 	priority (simpy.resources.resource.PriorityRequest attribute)

 	PriorityRequest (class in simpy.resources.resource)

 	PriorityResource (class in simpy.resources.resource)

 	

 	Process (class in simpy.events)

 	process (simpy.rt.RealtimeEnvironment attribute)

 	process() (simpy.core.Environment method)

 	processed (simpy.events.AllOf attribute)

 	

 	(simpy.events.AnyOf attribute)

 	(simpy.events.Condition attribute)

 	(simpy.events.Event attribute)

 	(simpy.events.Initialize attribute)

 	(simpy.events.Interruption attribute)

 	(simpy.events.Process attribute)

 	(simpy.events.Timeout attribute)

 	Put (class in simpy.resources.base)

 	put (simpy.resources.base.BaseResource attribute)

 	

 	(simpy.resources.container.Container attribute)

 	(simpy.resources.store.FilterStore attribute)

 	(simpy.resources.store.Store attribute)

 	put_queue (simpy.resources.base.BaseResource attribute)

 	PutQueue (simpy.resources.base.BaseResource attribute)

 	

 	(simpy.resources.resource.PriorityResource attribute)

Q

 	

 	queue (simpy.resources.resource.Resource attribute)

R

 	

 	RealtimeEnvironment (class in simpy.rt)

 	Release (class in simpy.resources.resource)

 	release (simpy.resources.resource.PriorityResource attribute)

 	

 	(simpy.resources.resource.Resource attribute)

 	Request (class in simpy.resources.resource)

 	

 	request (simpy.resources.resource.PriorityResource attribute)

 	

 	(simpy.resources.resource.Release attribute)

 	(simpy.resources.resource.Resource attribute)

 	Resource (class in simpy.resources.resource)

 	run() (simpy.core.BaseEnvironment method)

 	

 	(simpy.core.Environment method)

 	(simpy.rt.RealtimeEnvironment method)

S

 	

 	schedule() (simpy.core.BaseEnvironment method)

 	

 	(simpy.core.Environment method)

 	(simpy.rt.RealtimeEnvironment method)

 	simpy (module)

 	simpy.core (module)

 	simpy.even